Abstract
The plant enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase (HPPK/DHPS) is a mitochondrial bifunctional protein involved in tetrahydrofolate synthesis. The first domain (HPPK) catalyses the pyrophosphorylation of 6-hydroxymethyl-7,8-dihydropterin (dihydropterin) by ATP, leading to 6-hydroxymethyl-7,8-dihydropterin pyrophosphate (dihydropterinPP(i)) and AMP. The second domain (DHPS) catalyses the next step, i.e. the condensation of p-aminobenzoic acid (p-ABA) with dihydropterinPP(i) to give 7,8-dihydropteroate (dihydropteroate) and PP(i). In the present article we studied the coupling between these two reactions. Kinetic data obtained for the HPPK domain are consistent with an ordered Bi Bi mechanism where ATP binds first and dihydropterinPP(i) is released last, as proposed previously for the monofunctional Escherichia coli enzyme. In the absence of p-ABA, AMP and dihydropterinPP(i) accumulate and negatively regulate the reaction. In the presence of p-ABA, the rates of AMP and dihydropteroate synthesis are similar, indicating a good coupling between the two reactions. DihydropterinPP(i), an intermediate of the two reactions, never accumulates in this situation. The high specific activity of DHPS relative to HPPK, rather than a preferential channelling of dihydropterinPP(i) between the two catalytic sites, could explain these kinetic data. The maximal velocity of the DHPS domain is limited by the availability of dihydropterinPP(i). It is strongly feedback-inhibited by dihydropteroate and also dihydrofolate and tetrahydrofolate monoglutamate, two intermediates synthesized downstream in the folate biosynthetic pathway. Thus the HPPK domain of this bifunctional protein is the limiting factor of the overall reaction, but the DHPS domain is a potential key regulatory point of the whole folate biosynthetic pathway.
Full Text
The Full Text of this article is available as a PDF (176.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achari A., Somers D. O., Champness J. N., Bryant P. K., Rosemond J., Stammers D. K. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Biol. 1997 Jun;4(6):490–497. doi: 10.1038/nsb0697-490. [DOI] [PubMed] [Google Scholar]
- Allegra C. J., Boarman D., Kovacs J. A., Morrison P., Beaver J., Chabner B. A., Masur H. Interaction of sulfonamide and sulfone compounds with Toxoplasma gondii dihydropteroate synthase. J Clin Invest. 1990 Feb;85(2):371–379. doi: 10.1172/JCI114448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bermingham A., Bottomley J. R., Primrose W. U., Derrick J. P. Equilibrium and kinetic studies of substrate binding to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Escherichia coli. J Biol Chem. 2000 Jun 16;275(24):17962–17967. doi: 10.1074/jbc.M000331200. [DOI] [PubMed] [Google Scholar]
- Blaszczyk J., Shi G., Yan H., Ji X. Catalytic center assembly of HPPK as revealed by the crystal structure of a ternary complex at 1.25 A resolution. Structure. 2000 Oct 15;8(10):1049–1058. doi: 10.1016/s0969-2126(00)00502-5. [DOI] [PubMed] [Google Scholar]
- Brooks D. R., Wang P., Read M., Watkins W. M., Sims P. F., Hyde J. E. Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur J Biochem. 1994 Sep 1;224(2):397–405. doi: 10.1111/j.1432-1033.1994.00397.x. [DOI] [PubMed] [Google Scholar]
- Dallas W. S., Gowen J. E., Ray P. H., Cox M. J., Dev I. K. Cloning, sequencing, and enhanced expression of the dihydropteroate synthase gene of Escherichia coli MC4100. J Bacteriol. 1992 Sep;174(18):5961–5970. doi: 10.1128/jb.174.18.5961-5970.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fermér C., Swedberg G. Adaptation to sulfonamide resistance in Neisseria meningitidis may have required compensatory changes to retain enzyme function: kinetic analysis of dihydropteroate synthases from N. meningitidis expressed in a knockout mutant of Escherichia coli. J Bacteriol. 1997 Feb;179(3):831–837. doi: 10.1128/jb.179.3.831-837.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampele I. C., D'Arcy A., Dale G. E., Kostrewa D., Nielsen J., Oefner C., Page M. G., Schönfeld H. J., Stüber D., Then R. L. Structure and function of the dihydropteroate synthase from Staphylococcus aureus. J Mol Biol. 1997 Apr 25;268(1):21–30. doi: 10.1006/jmbi.1997.0944. [DOI] [PubMed] [Google Scholar]
- Hennig M., Dale G. E., D'arcy A., Danel F., Fischer S., Gray C. P., Jolidon S., Müller F., Page M. G., Pattison P. The structure and function of the 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Haemophilus influenzae. J Mol Biol. 1999 Mar 26;287(2):211–219. doi: 10.1006/jmbi.1999.2623. [DOI] [PubMed] [Google Scholar]
- Hong Y. L., Hossler P. A., Calhoun D. H., Meshnick S. R. Inhibition of recombinant Pneumocystis carinii dihydropteroate synthetase by sulfa drugs. Antimicrob Agents Chemother. 1995 Aug;39(8):1756–1763. doi: 10.1128/aac.39.8.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellam P., Dallas W. S., Ballantine S. P., Delves C. J. Functional cloning of the dihydropteroate synthase gene of Staphylococcus haemolyticus. FEMS Microbiol Lett. 1995 Dec 15;134(2-3):165–169. doi: 10.1111/j.1574-6968.1995.tb07932.x. [DOI] [PubMed] [Google Scholar]
- Knighton D. R., Kan C. C., Howland E., Janson C. A., Hostomska Z., Welsh K. M., Matthews D. A. Structure of and kinetic channelling in bifunctional dihydrofolate reductase-thymidylate synthase. Nat Struct Biol. 1994 Mar;1(3):186–194. doi: 10.1038/nsb0394-186. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lopez P., Espinosa M., Greenberg B., Lacks S. A. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J Bacteriol. 1987 Sep;169(9):4320–4326. doi: 10.1128/jb.169.9.4320-4326.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopez P., Lacks S. A. A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae with dihydroneopterin aldolase and hydroxymethyldihydropterin pyrophosphokinase activities. J Bacteriol. 1993 Apr;175(8):2214–2220. doi: 10.1128/jb.175.8.2214-2220.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neuburger M., Rébeillé F., Jourdain A., Nakamura S., Douce R. Mitochondria are a major site for folate and thymidylate synthesis in plants. J Biol Chem. 1996 Apr 19;271(16):9466–9472. doi: 10.1074/jbc.271.16.9466. [DOI] [PubMed] [Google Scholar]
- Paquin J., Baugh C. M., MacKenzie R. E. Channeling between the active sites of formiminotransferase-cyclodeaminase. Binding and kinetic studies. J Biol Chem. 1985 Dec 5;260(28):14925–14931. [PubMed] [Google Scholar]
- Rébeillé F., Macherel D., Mouillon J. M., Garin J., Douce R. Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO J. 1997 Mar 3;16(5):947–957. doi: 10.1093/emboj/16.5.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scrimgeour K. G. Methods for reduction, stabilization, and analyses of folates. Methods Enzymol. 1980;66:517–523. doi: 10.1016/0076-6879(80)66496-9. [DOI] [PubMed] [Google Scholar]
- Shi G., Gong Y., Savchenko A., Zeikus J. G., Xiao B., Ji X., Yan H. Dissecting the nucleotide binding properties of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase with fluorescent 3'(2)'-o-anthraniloyladenosine 5'-triphosphate. Biochim Biophys Acta. 2000 May 23;1478(2):289–299. doi: 10.1016/s0167-4838(00)00043-1. [DOI] [PubMed] [Google Scholar]
- Stammers D. K., Achari A., Somers D. O., Bryant P. K., Rosemond J., Scott D. L., Champness J. N. 2.0 A X-ray structure of the ternary complex of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue. FEBS Lett. 1999 Jul 30;456(1):49–53. doi: 10.1016/s0014-5793(99)00860-1. [DOI] [PubMed] [Google Scholar]
- Talarico T. L., Ray P. H., Dev I. K., Merrill B. M., Dallas W. S. Cloning, sequence analysis, and overexpression of Escherichia coli folK, the gene coding for 7,8-dihydro-6-hydroxymethylpterin-pyrophosphokinase. J Bacteriol. 1992 Sep;174(18):5971–5977. doi: 10.1128/jb.174.18.5971-5977.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triglia T., Cowman A. F. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7149–7153. doi: 10.1073/pnas.91.15.7149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Triglia T., Menting J. G., Wilson C., Cowman A. F. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13944–13949. doi: 10.1073/pnas.94.25.13944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volpe F., Ballantine S. P., Delves C. J. The multifunctional folic acid synthesis fas gene of Pneumocystis carinii encodes dihydroneopterin aldolase, hydroxymethyldihydropterin pyrophosphokinase and dihydropteroate synthase. Eur J Biochem. 1993 Sep 1;216(2):449–458. doi: 10.1111/j.1432-1033.1993.tb18163.x. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Meshnick S. R. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs. Antimicrob Agents Chemother. 1991 Feb;35(2):267–271. doi: 10.1128/aac.35.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]