Abstract
Free glycosylphosphatidylinositols (GPIs) are an important class of membrane lipids in many pathogenic protozoa. In this study, we have investigated the subcellular distribution and intracellular trafficking of an abundant class of free GPIs [termed glycosylinositolphospholipids (GIPLs)] in Leishmania mexicana promastigotes. The intracellular transport of the GIPLs and the major GPI-anchored glycoprotein gp63 was measured by following the incorporation of these molecules into sphingolipid-rich, detergent-resistant membranes (DRMs) in the plasma membrane. In metabolic-labelling experiments, mature GIPLs and gp63 were transported to DRMs in the plasma membrane with a t(1/2) of 70 and 40 min, respectively. Probably, GIPL transport to the DRMs involves a vesicular mechanism, as transport of both the GIPLs and gp63 was inhibited similarly at 10 degrees C. All GIPL intermediates were quantitatively recovered in Triton X-100-soluble membranes and were largely orientated on the cytoplasmic face of the endoplasmic reticulum, as shown by their sensitivity to exogenous phosphatidylinositol-specific phospho-lipase C. On the contrary, a significant proportion of the mature GIPLs ( approximately 50% of iM4) were accessible to membrane-impermeable probes on the surface of live promastigotes. These results suggest that the GIPLs are flipped across intracellular or plasma membranes during surface transport and that a significant fraction may populate the cytoplasmic leaflet of the plasma membrane. Finally, treatment of L. mexicana promastigotes with myriocin, an inhibitor of sphingolipid biosynthesis, demonstrated that ongoing sphingolipid biosynthesis is not required for the plasma-membrane transport of either gp63 or the GIPLs and that DRMs persist even when cellular levels of the major sphingolipid are depleted by 70%.
Full Text
The Full Text of this article is available as a PDF (348.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida I. C., Camargo M. M., Procópio D. O., Silva L. S., Mehlert A., Travassos L. R., Gazzinelli R. T., Ferguson M. A. Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 2000 Apr 3;19(7):1476–1485. doi: 10.1093/emboj/19.7.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azzouz N., Striepen B., Gerold P., Capdeville Y., Schwarz R. T. Glycosylinositol-phosphoceramide in the free-living protozoan Paramecium primaurelia: modification of core glycans by mannosyl phosphate. EMBO J. 1995 Sep 15;14(18):4422–4433. doi: 10.1002/j.1460-2075.1995.tb00121.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagnat M., Keränen S., Shevchenko A., Shevchenko A., Simons K. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3254–3259. doi: 10.1073/pnas.060034697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bangs J. D., Ransom D. M., McDowell M. A., Brouch E. M. Expression of bloodstream variant surface glycoproteins in procyclic stage Trypanosoma brucei: role of GPI anchors in secretion. EMBO J. 1997 Jul 16;16(14):4285–4294. doi: 10.1093/emboj/16.14.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bangs J. D., Uyetake L., Brickman M. J., Balber A. E., Boothroyd J. C. Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. J Cell Sci. 1993 Aug;105(Pt 4):1101–1113. doi: 10.1242/jcs.105.4.1101. [DOI] [PubMed] [Google Scholar]
- Baumann N. A., Vidugiriene J., Machamer C. E., Menon A. K. Cell surface display and intracellular trafficking of free glycosylphosphatidylinositols in mammalian cells. J Biol Chem. 2000 Mar 10;275(10):7378–7389. doi: 10.1074/jbc.275.10.7378. [DOI] [PubMed] [Google Scholar]
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Brown D. A., London E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem. 2000 Jun 9;275(23):17221–17224. doi: 10.1074/jbc.R000005200. [DOI] [PubMed] [Google Scholar]
- Denny P. W., Field M. C., Smith D. F. GPI-anchored proteins and glycoconjugates segregate into lipid rafts in Kinetoplastida. FEBS Lett. 2001 Feb 23;491(1-2):148–153. doi: 10.1016/s0014-5793(01)02172-x. [DOI] [PubMed] [Google Scholar]
- Duszenko M., Ivanov I. E., Ferguson M. A., Plesken H., Cross G. A. Intracellular transport of a variant surface glycoprotein in Trypanosoma brucei. J Cell Biol. 1988 Jan;106(1):77–86. doi: 10.1083/jcb.106.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dwyer D. M., Gottlieb M. Surface membrane localization of 3'- and 5'-nucleotidase activities in Leishmania donovani promastigotes. Mol Biochem Parasitol. 1984 Feb;10(2):139–150. doi: 10.1016/0166-6851(84)90002-1. [DOI] [PubMed] [Google Scholar]
- Ghedin E., Debrabant A., Engel J. C., Dwyer D. M. Secretory and endocytic pathways converge in a dynamic endosomal system in a primitive protozoan. Traffic. 2001 Mar;2(3):175–188. doi: 10.1034/j.1600-0854.2001.020304.x. [DOI] [PubMed] [Google Scholar]
- Guha-Niyogi A., Sullivan D. R., Turco S. J. Glycoconjugate structures of parasitic protozoa. Glycobiology. 2001 Apr;11(4):45R–59R. doi: 10.1093/glycob/11.4.45r. [DOI] [PubMed] [Google Scholar]
- Ha D. S., Schwarz J. K., Turco S. J., Beverley S. M. Use of the green fluorescent protein as a marker in transfected Leishmania. Mol Biochem Parasitol. 1996 Apr;77(1):57–64. doi: 10.1016/0166-6851(96)02580-7. [DOI] [PubMed] [Google Scholar]
- Holthuis J. C., Pomorski T., Raggers R. J., Sprong H., Van Meer G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev. 2001 Oct;81(4):1689–1723. doi: 10.1152/physrev.2001.81.4.1689. [DOI] [PubMed] [Google Scholar]
- Hong K., Ma D., Beverley S. M., Turco S. J. The Leishmania GDP-mannose transporter is an autonomous, multi-specific, hexameric complex of LPG2 subunits. Biochemistry. 2000 Feb 29;39(8):2013–2022. doi: 10.1021/bi992363l. [DOI] [PubMed] [Google Scholar]
- Horvath A., Sütterlin C., Manning-Krieg U., Movva N. R., Riezman H. Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J. 1994 Aug 15;13(16):3687–3695. doi: 10.1002/j.1460-2075.1994.tb06678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ilg T., Demar M., Harbecke D. Phosphoglycan repeat-deficient Leishmania mexicana parasites remain infectious to macrophages and mice. J Biol Chem. 2000 Nov 8;276(7):4988–4997. doi: 10.1074/jbc.M008030200. [DOI] [PubMed] [Google Scholar]
- Ilgoutz S. C., Mullin K. A., Southwell B. R., McConville M. J. Glycosylphosphatidylinositol biosynthetic enzymes are localized to a stable tubular subcompartment of the endoplasmic reticulum in Leishmania mexicana. EMBO J. 1999 Jul 1;18(13):3643–3654. doi: 10.1093/emboj/18.13.3643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ilgoutz S. C., Zawadzki J. L., Ralton J. E., McConville M. J. Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana. EMBO J. 1999 May 17;18(10):2746–2755. doi: 10.1093/emboj/18.10.2746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karp C. L., Turco S. J., Sacks D. L. Lipophosphoglycan masks recognition of the Leishmania donovani promastigote surface by human kala-azar serum. J Immunol. 1991 Jul 15;147(2):680–684. [PubMed] [Google Scholar]
- Landfear S. M., Ignatushchenko M. The flagellum and flagellar pocket of trypanosomatids. Mol Biochem Parasitol. 2001 Jun;115(1):1–17. doi: 10.1016/s0166-6851(01)00262-6. [DOI] [PubMed] [Google Scholar]
- Ledesma M. D., Brügger B., Bünning C., Wieland F. T., Dotti C. G. Maturation of the axonal plasma membrane requires upregulation of sphingomyelin synthesis and formation of protein-lipid complexes. EMBO J. 1999 Apr 1;18(7):1761–1771. doi: 10.1093/emboj/18.7.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine T. P., Wiggins C. A., Munro S. Inositol phosphorylceramide synthase is located in the Golgi apparatus of Saccharomyces cerevisiae. Mol Biol Cell. 2000 Jul;11(7):2267–2281. doi: 10.1091/mbc.11.7.2267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayor S., Menon A. K., Cross G. A. Galactose-containing glycosylphosphatidylinositols in Trypanosoma brucei. J Biol Chem. 1992 Jan 15;267(2):754–761. [PubMed] [Google Scholar]
- McConville M. J., Blackwell J. M. Developmental changes in the glycosylated phosphatidylinositols of Leishmania donovani. Characterization of the promastigote and amastigote glycolipids. J Biol Chem. 1991 Aug 15;266(23):15170–15179. [PubMed] [Google Scholar]
- McConville M. J., Collidge T. A., Ferguson M. A., Schneider P. The glycoinositol phospholipids of Leishmania mexicana promastigotes. Evidence for the presence of three distinct pathways of glycolipid biosynthesis. J Biol Chem. 1993 Jul 25;268(21):15595–15604. [PubMed] [Google Scholar]
- McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConville M. J., Menon A. K. Recent developments in the cell biology and biochemistry of glycosylphosphatidylinositol lipids (review). Mol Membr Biol. 2000 Jan-Mar;17(1):1–16. doi: 10.1080/096876800294443. [DOI] [PubMed] [Google Scholar]
- McConville Malcolm J., Mullin Kylie A., Ilgoutz Steven C., Teasdale Rohan D. Secretory pathway of trypanosomatid parasites. Microbiol Mol Biol Rev. 2002 Mar;66(1):122–contents. doi: 10.1128/MMBR.66.1.122-154.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDowell M. A., Ransom D. M., Bangs J. D. Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei. Biochem J. 1998 Nov 1;335(Pt 3):681–689. doi: 10.1042/bj3350681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGwire B. S., Chang K. P. Posttranslational regulation of a Leishmania HEXXH metalloprotease (gp63). The effects of site-specific mutagenesis of catalytic, zinc binding, N-glycosylation, and glycosyl phosphatidylinositol addition sites on N-terminal end cleavage, intracellular stability, and extracellular exit. J Biol Chem. 1996 Apr 5;271(14):7903–7909. doi: 10.1074/jbc.271.14.7903. [DOI] [PubMed] [Google Scholar]
- Medina-Acosta E., Karess R. E., Schwartz H., Russell D. G. The promastigote surface protease (gp63) of Leishmania is expressed but differentially processed and localized in the amastigote stage. Mol Biochem Parasitol. 1989 Dec;37(2):263–273. doi: 10.1016/0166-6851(89)90158-8. [DOI] [PubMed] [Google Scholar]
- Menon A. K. Lipids: more than just membrane fabric. Trends Cell Biol. 1998 Sep;8(9):374–376. doi: 10.1016/s0962-8924(98)01340-3. [DOI] [PubMed] [Google Scholar]
- Mensa-Wilmot K., LeBowitz J. H., Chang K. P., al-Qahtani A., McGwire B. S., Tucker S., Morris J. C. A glycosylphosphatidylinositol (GPI)-negative phenotype produced in Leishmania major by GPI phospholipase C from Trypanosoma brucei: topography of two GPI pathways. J Cell Biol. 1994 Mar;124(6):935–947. doi: 10.1083/jcb.124.6.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullin K. A., Foth B. J., Ilgoutz S. C., Callaghan J. M., Zawadzki J. L., McFadden G. I., McConville M. J. Regulated degradation of an endoplasmic reticulum membrane protein in a tubular lysosome in Leishmania mexicana. Mol Biol Cell. 2001 Aug;12(8):2364–2377. doi: 10.1091/mbc.12.8.2364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muñiz M., Morsomme P., Riezman H. Protein sorting upon exit from the endoplasmic reticulum. Cell. 2001 Jan 26;104(2):313–320. doi: 10.1016/s0092-8674(01)00215-x. [DOI] [PubMed] [Google Scholar]
- Muñiz M., Nuoffer C., Hauri H. P., Riezman H. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J Cell Biol. 2000 Mar 6;148(5):925–930. doi: 10.1083/jcb.148.5.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralton J. E., McConville M. J. Delineation of three pathways of glycosylphosphatidylinositol biosynthesis in Leishmania mexicana. Precursors from different pathways are assembled on distinct pools of phosphatidylinositol and undergo fatty acid remodeling. J Biol Chem. 1998 Feb 13;273(7):4245–4257. doi: 10.1074/jbc.273.7.4245. [DOI] [PubMed] [Google Scholar]
- Rathbun W. B., Betlach M. V. Estimation of enzymically produced orthophosphate in the presence of cysteine and adenosine triphosphate. Anal Biochem. 1969 Apr 4;28(1):436–445. doi: 10.1016/0003-2697(69)90198-5. [DOI] [PubMed] [Google Scholar]
- Redman C. A., Schneider P., Mehlert A., Ferguson M. A. The glycoinositol-phospholipids of Phytomonas. Biochem J. 1995 Oct 15;311(Pt 2):495–503. doi: 10.1042/bj3110495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider P., Ferguson M. A., McConville M. J., Mehlert A., Homans S. W., Bordier C. Structure of the glycosyl-phosphatidylinositol membrane anchor of the Leishmania major promastigote surface protease. J Biol Chem. 1990 Oct 5;265(28):16955–16964. [PubMed] [Google Scholar]
- Simons K., Ikonen E. How cells handle cholesterol. Science. 2000 Dec 1;290(5497):1721–1726. doi: 10.1126/science.290.5497.1721. [DOI] [PubMed] [Google Scholar]
- Stevens V. L., Tang J. Fumonisin B1-induced sphingolipid depletion inhibits vitamin uptake via the glycosylphosphatidylinositol-anchored folate receptor. J Biol Chem. 1997 Jul 18;272(29):18020–18025. doi: 10.1074/jbc.272.29.18020. [DOI] [PubMed] [Google Scholar]
- Sütterlin C., Doering T. L., Schimmöller F., Schröder S., Riezman H. Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J Cell Sci. 1997 Nov;110(Pt 21):2703–2714. doi: 10.1242/jcs.110.21.2703. [DOI] [PubMed] [Google Scholar]
- Tachado S. D., Gerold P., Schwarz R., Novakovic S., McConville M., Schofield L. Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4022–4027. doi: 10.1073/pnas.94.8.4022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turco S. J., Späth G. F., Beverley S. M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol. 2001 May;17(5):223–226. doi: 10.1016/s1471-4922(01)01895-5. [DOI] [PubMed] [Google Scholar]
- Vidugiriene J., Menon A. K. The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum. J Cell Biol. 1994 Oct;127(2):333–341. doi: 10.1083/jcb.127.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weise F., Stierhof Y. D., Kühn C., Wiese M., Overath P. Distribution of GPI-anchored proteins in the protozoan parasite Leishmania, based on an improved ultrastructural description using high-pressure frozen cells. J Cell Sci. 2000 Dec;113(Pt 24):4587–4603. doi: 10.1242/jcs.113.24.4587. [DOI] [PubMed] [Google Scholar]
- Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
- Winter G., Fuchs M., McConville M. J., Stierhof Y. D., Overath P. Surface antigens of Leishmania mexicana amastigotes: characterization of glycoinositol phospholipids and a macrophage-derived glycosphingolipid. J Cell Sci. 1994 Sep;107(Pt 9):2471–2482. doi: 10.1242/jcs.107.9.2471. [DOI] [PubMed] [Google Scholar]
- van't Hof W., Rodriguez-Boulan E., Menon A. K. Nonpolarized distribution of glycosylphosphatidylinositols in the plasma membrane of polarized Madin-Darby canine kidney cells. J Biol Chem. 1995 Oct 13;270(41):24150–24155. doi: 10.1074/jbc.270.41.24150. [DOI] [PubMed] [Google Scholar]