Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Apr 15;363(Pt 2):411–416. doi: 10.1042/0264-6021:3630411

A frequent human coagulation Factor VII mutation (A294V, c152) in loop 140s affects the interaction with activators, tissue factor and substrates.

Raffaella Toso 1, Mirko Pinotti 1, Katherine A High 1, Eleanor S Pollak 1, Francesco Bernardi 1
PMCID: PMC1222493  PMID: 11931672

Abstract

Activated Factor VII (FVIIa) is a vitamin-K-dependent serine protease that initiates blood clotting after interacting with its cofactor tissue factor (TF). The complex FVIIa-TF is responsible for the activation of Factor IX (FIX) and Factor X (FX), leading ultimately to the formation of a stable fibrin clot. Activated FX (FXa), a product of FVIIa enzymic activity, is also the most efficient activator of zymogen FVII. Interactions of FVII/FVIIa with its activators, cofactor and substrates have been investigated extensively to define contact regions and residues involved in the formation of the complexes. Site-directed mutagenesis and inhibition assays led to the identification of sites removed from the FVIIa active site that influence binding specificity and affinity of the enzyme. In this study we report the characterization of a frequent naturally occurring human FVII mutant, A294V (residue 152 in the chymotrypsin numbering system), located in loop 140s. This region undergoes major rearrangements after FVII activation and is relevant to the development of substrate specificity. FVII A294V shows delayed activation by FXa as well as reduced activity towards peptidyl and macromolecular substrates without impairing the catalytic efficiency of the triad. Also, the interaction of this FVII variant with TF was altered, suggesting that this residue, and more likely loop 140s, plays a pivotal role not only in the recognition of FX by the FVIIa-TF complex, but also in the interaction of FVII with both its activators and cofactor TF.

Full Text

The Full Text of this article is available as a PDF (141.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbini A. A., Bodkin D., Lopaciuk S., Bauer K. A. Molecular analysis of Polish patients with factor VII deficiency. Blood. 1994 Oct 1;84(7):2214–2220. [PubMed] [Google Scholar]
  2. Banner D. W., D'Arcy A., Chène C., Winkler F. K., Guha A., Konigsberg W. H., Nemerson Y., Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature. 1996 Mar 7;380(6569):41–46. doi: 10.1038/380041a0. [DOI] [PubMed] [Google Scholar]
  3. Bernardi F., Castaman G., Redaelli R., Pinotti M., Lunghi B., Rodeghiero F., Marchetti G. Topologically equivalent mutations causing dysfunctional coagulation factors VII (294Ala-->Val) and X (334Ser-->Pro). Hum Mol Genet. 1994 Jul;3(7):1175–1177. doi: 10.1093/hmg/3.7.1175. [DOI] [PubMed] [Google Scholar]
  4. Betz A., Krishnaswamy S. Regions remote from the site of cleavage determine macromolecular substrate recognition by the prothrombinase complex. J Biol Chem. 1998 Apr 24;273(17):10709–10718. doi: 10.1074/jbc.273.17.10709. [DOI] [PubMed] [Google Scholar]
  5. Bode W., Brandstetter H., Mather T., Stubbs M. T. Comparative analysis of haemostatic proteinases: structural aspects of thrombin, factor Xa, factor IXa and protein C. Thromb Haemost. 1997 Jul;78(1):501–511. [PubMed] [Google Scholar]
  6. Bode W., Schwager P., Huber R. The transition of bovine trypsinogen to a trypsin-like state upon strong ligand binding. The refined crystal structures of the bovine trypsinogen-pancreatic trypsin inhibitor complex and of its ternary complex with Ile-Val at 1.9 A resolution. J Mol Biol. 1978 Jan 5;118(1):99–112. doi: 10.1016/0022-2836(78)90246-2. [DOI] [PubMed] [Google Scholar]
  7. Chaing S., Clarke B., Sridhara S., Chu K., Friedman P., VanDusen W., Roberts H. R., Blajchman M., Monroe D. M., High K. A. Severe factor VII deficiency caused by mutations abolishing the cleavage site for activation and altering binding to tissue factor. Blood. 1994 Jun 15;83(12):3524–3535. [PubMed] [Google Scholar]
  8. Dennis M. S., Eigenbrot C., Skelton N. J., Ultsch M. H., Santell L., Dwyer M. A., O'Connell M. P., Lazarus R. A. Peptide exosite inhibitors of factor VIIa as anticoagulants. Nature. 2000 Mar 30;404(6777):465–470. doi: 10.1038/35006574. [DOI] [PubMed] [Google Scholar]
  9. Dickinson C. D., Kelly C. R., Ruf W. Identification of surface residues mediating tissue factor binding and catalytic function of the serine protease factor VIIa. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14379–14384. doi: 10.1073/pnas.93.25.14379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dittmar S., Ruf W., Edgington T. S. Influence of mutations in tissue factor on the fine specificity of macromolecular substrate activation. Biochem J. 1997 Feb 1;321(Pt 3):787–793. doi: 10.1042/bj3210787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eigenbrot C., Kirchhofer D., Dennis M. S., Santell L., Lazarus R. A., Stamos J., Ultsch M. H. The factor VII zymogen structure reveals reregistration of beta strands during activation. Structure. 2001 Jul 3;9(7):627–636. doi: 10.1016/s0969-2126(01)00624-4. [DOI] [PubMed] [Google Scholar]
  12. Freer S. T., Kraut J., Robertus J. D., Wright H. T., Xuong N. H. Chymotrypsinogen: 2.5-angstrom crystal structure, comparison with alpha-chymotrypsin, and implications for zymogen activation. Biochemistry. 1970 Apr 28;9(9):1997–2009. doi: 10.1021/bi00811a022. [DOI] [PubMed] [Google Scholar]
  13. Furie B., Furie B. C. The molecular basis of blood coagulation. Cell. 1988 May 20;53(4):505–518. doi: 10.1016/0092-8674(88)90567-3. [DOI] [PubMed] [Google Scholar]
  14. Greer J. Comparative modeling methods: application to the family of the mammalian serine proteases. Proteins. 1990;7(4):317–334. doi: 10.1002/prot.340070404. [DOI] [PubMed] [Google Scholar]
  15. Higashi S., Matsumoto N., Iwanaga S. Molecular mechanism of tissue factor-mediated acceleration of factor VIIa activity. J Biol Chem. 1996 Oct 25;271(43):26569–26574. doi: 10.1074/jbc.271.43.26569. [DOI] [PubMed] [Google Scholar]
  16. Higgins D. L., Mann K. G. The interaction of bovine factor V and factor V-derived peptides with phospholipid vesicles. J Biol Chem. 1983 May 25;258(10):6503–6508. [PubMed] [Google Scholar]
  17. Hunault M., Arbini A. A., Lopaciuk S., Carew J. A., Bauer K. A. The Arg353Gln polymorphism reduces the level of coagulation factor VII. In vivo and in vitro studies. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2825–2829. doi: 10.1161/01.atv.17.11.2825. [DOI] [PubMed] [Google Scholar]
  18. Idusogie E., Rosen E., Geng J. P., Carmeliet P., Collen D., Castellino F. J. Characterization of a cDNA encoding murine coagulation factor VII. Thromb Haemost. 1996 Mar;75(3):481–487. [PubMed] [Google Scholar]
  19. Jin J., Chang J., Stafford D. W., Straight D. L. Residues Y179 and H101 of a hydrophobic patch of factor VII are involved in activation by factor Xa. Biochemistry. 2001 Sep 25;40(38):11405–11410. doi: 10.1021/bi010990g. [DOI] [PubMed] [Google Scholar]
  20. Jin J., Perera L., Stafford D., Pedersen L. Four loops of the catalytic domain of factor viia mediate the effect of the first EGF-like domain substitution on factor viia catalytic activity. J Mol Biol. 2001 Apr 13;307(5):1503–1517. doi: 10.1006/jmbi.2001.4556. [DOI] [PubMed] [Google Scholar]
  21. Kemball-Cook G., Johnson D. J., Tuddenham E. G., Harlos K. Crystal structure of active site-inhibited human coagulation factor VIIa (des-Gla). J Struct Biol. 1999 Oct;127(3):213–223. doi: 10.1006/jsbi.1999.4158. [DOI] [PubMed] [Google Scholar]
  22. Kirchhofer D., Eigenbrot C., Lipari M. T., Moran P., Peek M., Kelley R. F. The tissue factor region that interacts with factor Xa in the activation of factor VII. Biochemistry. 2001 Jan 23;40(3):675–682. doi: 10.1021/bi002013v. [DOI] [PubMed] [Google Scholar]
  23. Kirchhofer D., Lipari M. T., Moran P., Eigenbrot C., Kelley R. F. The tissue factor region that interacts with substrates factor IX and Factor X. Biochemistry. 2000 Jun 27;39(25):7380–7387. doi: 10.1021/bi000182+. [DOI] [PubMed] [Google Scholar]
  24. Kisiel W., Fujikawa K., Davie E. W. Activation of bovine factor VII (proconvertin) by factor XIIa (activated Hageman factor). Biochemistry. 1977 Sep 20;16(19):4189–4194. doi: 10.1021/bi00638a009. [DOI] [PubMed] [Google Scholar]
  25. Krawczak M., Wacey A., Cooper D. N. Molecular reconstruction and homology modelling of the catalytic domain of the common ancestor of the haemostatic vitamin-K-dependent serine proteinases. Hum Genet. 1996 Sep;98(3):351–370. doi: 10.1007/s004390050222. [DOI] [PubMed] [Google Scholar]
  26. Kumar A., Fair D. S. Specific molecular interaction sites on factor VII involved in factor X activation. Eur J Biochem. 1993 Oct 15;217(2):509–518. doi: 10.1111/j.1432-1033.1993.tb18271.x. [DOI] [PubMed] [Google Scholar]
  27. Naoi Y., Chong K. T., Yoshimatsu K., Miyazaki G., Tame J. R., Park S. Y., Adachi S., Morimoto H. The functional similarity and structural diversity of human and cartilaginous fish hemoglobins. J Mol Biol. 2001 Mar 16;307(1):259–270. doi: 10.1006/jmbi.2000.4446. [DOI] [PubMed] [Google Scholar]
  28. Nemerson Y., Esnouf M. P. Activation of a proteolytic system by a membrane lipoprotein: mechanism of action of tissue factor. Proc Natl Acad Sci U S A. 1973 Feb;70(2):310–314. doi: 10.1073/pnas.70.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nicolaisen E. M., Thim L., Jacobsen J. K., Nielsen P. F., Mollerup I., Jørgensen T., Hedner U. FVIIa derivatives obtained by autolytic and controlled cathepsin G mediated cleavage. FEBS Lett. 1993 Feb 15;317(3):245–249. doi: 10.1016/0014-5793(93)81285-8. [DOI] [PubMed] [Google Scholar]
  30. Pedersen A. H., Lund-Hansen T., Bisgaard-Frantzen H., Olsen F., Petersen L. C. Autoactivation of human recombinant coagulation factor VII. Biochemistry. 1989 Nov 28;28(24):9331–9336. doi: 10.1021/bi00450a013. [DOI] [PubMed] [Google Scholar]
  31. Persson E., Bak H., Olsen O. H. Substitution of valine for leucine 305 in factor VIIa increases the intrinsic enzymatic activity. J Biol Chem. 2001 Jun 1;276(31):29195–29199. doi: 10.1074/jbc.M102187200. [DOI] [PubMed] [Google Scholar]
  32. Persson E., Nielsen L. S., Olsen O. H. Substitution of aspartic acid for methionine-306 in factor VIIa abolishes the allosteric linkage between the active site and the binding interface with tissue factor. Biochemistry. 2001 Mar 20;40(11):3251–3256. doi: 10.1021/bi001612z. [DOI] [PubMed] [Google Scholar]
  33. Pike A. C., Brzozowski A. M., Roberts S. M., Olsen O. H., Persson E. Structure of human factor VIIa and its implications for the triggering of blood coagulation. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8925–8930. doi: 10.1073/pnas.96.16.8925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Radcliffe R., Nemerson Y. Activation and control of factor VII by activated factor X and thrombin. Isolation and characterization of a single chain form of factor VII. J Biol Chem. 1975 Jan 25;250(2):388–395. [PubMed] [Google Scholar]
  35. Radcliffe R., Nemerson Y. Mechanism of activation of bovine factor VII. Products of cleavage by factor Xa. J Biol Chem. 1976 Aug 25;251(16):4749–4802. [PubMed] [Google Scholar]
  36. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  37. Seligsohn U., Osterud B., Brown S. F., Griffin J. H., Rapaport S. I. Activation of human factor VII in plasma and in purified systems: roles of activated factor IX, kallikrein, and activated factor XII. J Clin Invest. 1979 Oct;64(4):1056–1065. doi: 10.1172/JCI109543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sheehan J., Templer M., Gregory M., Hanumanthaiah R., Troyer D., Phan T., Thankavel B., Jagadeeswaran P. Demonstration of the extrinsic coagulation pathway in teleostei: identification of zebrafish coagulation factor VII. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8768–8773. doi: 10.1073/pnas.131109398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Shobe J., Dickinson C. D., Ruf W. Regulation of the catalytic function of coagulation factor VIIa by a conformational linkage of surface residue Glu 154 to the active site. Biochemistry. 1999 Mar 2;38(9):2745–2751. doi: 10.1021/bi981951g. [DOI] [PubMed] [Google Scholar]
  40. Soejima K., Mizuguchi J., Yuguchi M., Nakagaki T., Higashi S., Iwanaga S. Factor VIIa modified in the 170 loop shows enhanced catalytic activity but does not change the zymogen-like property. J Biol Chem. 2001 Feb 2;276(20):17229–17235. doi: 10.1074/jbc.M009206200. [DOI] [PubMed] [Google Scholar]
  41. Wulff K., Herrmann F. H. Twenty two novel mutations of the factor VII gene in factor VII deficiency. Hum Mutat. 2000;15(6):489–496. doi: 10.1002/1098-1004(200006)15:6<489::AID-HUMU1>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES