Abstract
The endolysosomal system comprises a unique environment for proteolysis, which is regulated in a manner that apparently does not involve protease inhibitors. The system comprises a series of membrane-bound intracellular compartments, within which endocytosed material and redundant cellular components are hydrolysed. Endocytosed material tends to flow vectorially through the system, proceeding through the early endosome, the endosome carrier vesicle, the late endosome and the lysosome. Phagocytosis and autophagy provide alternative entry points into the system. Late endosomes, lysosome/late endosome hybrid organelles, phagosomes and autophagosomes are the principal sites for proteolysis. In each case, hydrolytic competence is due to components of the endolysosomal system, i.e. proteases, lysosome-associated membrane proteins, H(+)-ATPases and possibly cysteine transporters. The view is emerging that lysosomes are organelles for the storage of hydrolases, perhaps in an inactivated form. Once a substrate has entered a proteolytically competent environment, the rate-limiting proteolytic steps are probably effected by cysteine endoproteinases. As these are affected by pH and possibly redox potential, they may be regulated by the organelle luminal environment. Regulation is probably also affected, among other factors, by organelle fusion reactions, whereby the meeting of enzyme and substrate may be controlled. Such systems would permit simultaneous regulation of a number of unrelated hydrolases.
Full Text
The Full Text of this article is available as a PDF (225.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrejewski N., Punnonen E. L., Guhde G., Tanaka Y., Lüllmann-Rauch R., Hartmann D., von Figura K., Saftig P. Normal lysosomal morphology and function in LAMP-1-deficient mice. J Biol Chem. 1999 Apr 30;274(18):12692–12701. doi: 10.1074/jbc.274.18.12692. [DOI] [PubMed] [Google Scholar]
- Andrews N. W. Regulated secretion of conventional lysosomes. Trends Cell Biol. 2000 Aug;10(8):316–321. doi: 10.1016/s0962-8924(00)01794-3. [DOI] [PubMed] [Google Scholar]
- Aniento F., Emans N., Griffiths G., Gruenberg J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol. 1993 Dec;123(6 Pt 1):1373–1387. doi: 10.1083/jcb.123.6.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arunachalam B., Phan U. T., Geuze H. J., Cresswell P. Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):745–750. doi: 10.1073/pnas.97.2.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakker A. C., Webster P., Jacob W. A., Andrews N. W. Homotypic fusion between aggregated lysosomes triggered by elevated [Ca2+]i in fibroblasts. J Cell Sci. 1997 Sep;110(Pt 18):2227–2238. doi: 10.1242/jcs.110.18.2227. [DOI] [PubMed] [Google Scholar]
- Berg T., Gjøen T., Bakke O. Physiological functions of endosomal proteolysis. Biochem J. 1995 Apr 15;307(Pt 2):313–326. doi: 10.1042/bj3070313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blommaart E. F., Luiken J. J., Meijer A. J. Autophagic proteolysis: control and specificity. Histochem J. 1997 May;29(5):365–385. doi: 10.1023/a:1026486801018. [DOI] [PubMed] [Google Scholar]
- Bohley P., Seglen P. O. Proteases and proteolysis in the lysosome. Experientia. 1992 Feb 15;48(2):151–157. doi: 10.1007/BF01923508. [DOI] [PubMed] [Google Scholar]
- Bright N. A., Reaves B. J., Mullock B. M., Luzio J. P. Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci. 1997 Sep;110(Pt 17):2027–2040. doi: 10.1242/jcs.110.17.2027. [DOI] [PubMed] [Google Scholar]
- Buckmaster M. J., Ferris A. L., Storrie B. Effects of pH, detergent and salt on aggregation of Chinese-hamster-ovary-cell lysosomal enzymes. Biochem J. 1988 Feb 1;249(3):921–923. doi: 10.1042/bj2490921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butor C., Griffiths G., Aronson N. N., Jr, Varki A. Co-localization of hydrolytic enzymes with widely disparate pH optima: implications for the regulation of lysosomal pH. J Cell Sci. 1995 Jun;108(Pt 6):2213–2219. doi: 10.1242/jcs.108.6.2213. [DOI] [PubMed] [Google Scholar]
- Cain C. C., Sipe D. M., Murphy R. F. Regulation of endocytic pH by the Na+,K+-ATPase in living cells. Proc Natl Acad Sci U S A. 1989 Jan;86(2):544–548. doi: 10.1073/pnas.86.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
- Cavalli V., Vilbois F., Corti M., Marcote M. J., Tamura K., Karin M., Arkinstall S., Gruenberg J. The stress-induced MAP kinase p38 regulates endocytic trafficking via the GDI:Rab5 complex. Mol Cell. 2001 Feb;7(2):421–432. doi: 10.1016/s1097-2765(01)00189-7. [DOI] [PubMed] [Google Scholar]
- Clague M. J. Molecular aspects of the endocytic pathway. Biochem J. 1998 Dec 1;336(Pt 2):271–282. doi: 10.1042/bj3360271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clague M. J., Urbé S., Aniento F., Gruenberg J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J Biol Chem. 1994 Jan 7;269(1):21–24. [PubMed] [Google Scholar]
- Clague M. J., Urbé S. The interface of receptor trafficking and signalling. J Cell Sci. 2001 Sep;114(Pt 17):3075–3081. doi: 10.1242/jcs.114.17.3075. [DOI] [PubMed] [Google Scholar]
- Claus V., Jahraus A., Tjelle T., Berg T., Kirschke H., Faulstich H., Griffiths G. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J Biol Chem. 1998 Apr 17;273(16):9842–9851. doi: 10.1074/jbc.273.16.9842. [DOI] [PubMed] [Google Scholar]
- Collier R. J., Kandel J. Structure and activity of diphtheria toxin. I. Thiol-dependent dissociation of a fraction of toxin into enzymically active and inactive fragments. J Biol Chem. 1971 Mar 10;246(5):1496–1503. [PubMed] [Google Scholar]
- Collins D. S., Unanue E. R., Harding C. V. Reduction of disulfide bonds within lysosomes is a key step in antigen processing. J Immunol. 1991 Dec 15;147(12):4054–4059. [PubMed] [Google Scholar]
- Colomer V., Kicska G. A., Rindler M. J. Secretory granule content proteins and the luminal domains of granule membrane proteins aggregate in vitro at mildly acidic pH. J Biol Chem. 1996 Jan 5;271(1):48–55. doi: 10.1074/jbc.271.1.48. [DOI] [PubMed] [Google Scholar]
- Cuervo A. M., Dice J. F. Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med (Berl) 1998 Jan;76(1):6–12. doi: 10.1007/s001090050185. [DOI] [PubMed] [Google Scholar]
- Cuozzo J. W., Tao K., Cygler M., Mort J. S., Sahagian G. G. Lysine-based structure responsible for selective mannose phosphorylation of cathepsin D and cathepsin L defines a common structural motif for lysosomal enzyme targeting. J Biol Chem. 1998 Aug 14;273(33):21067–21076. doi: 10.1074/jbc.273.33.21067. [DOI] [PubMed] [Google Scholar]
- Dehrmann F. M., Coetzer T. H., Pike R. N., Dennison C. Mature cathepsin L is substantially active in the ionic milieu of the extracellular medium. Arch Biochem Biophys. 1995 Dec 1;324(1):93–98. doi: 10.1006/abbi.1995.9924. [DOI] [PubMed] [Google Scholar]
- Dehrmann F. M., Elliott E., Dennison C. Reductive activation markedly increases the stability of cathepsins B and L to extracellular ionic conditions. Biol Chem Hoppe Seyler. 1996 Jun;377(6):391–394. doi: 10.1515/bchm3.1996.377.6.391. [DOI] [PubMed] [Google Scholar]
- Denzer K., Kleijmeer M. J., Heijnen H. F., Stoorvogel W., Geuze H. J. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 2000 Oct;113(Pt 19):3365–3374. doi: 10.1242/jcs.113.19.3365. [DOI] [PubMed] [Google Scholar]
- Desjardins M., Huber L. A., Parton R. G., Griffiths G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol. 1994 Mar;124(5):677–688. doi: 10.1083/jcb.124.5.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn W. A., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1923–1933. doi: 10.1083/jcb.110.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn W. A., Jr Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1935–1945. doi: 10.1083/jcb.110.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feener E. P., Shen W. C., Ryser H. J. Cleavage of disulfide bonds in endocytosed macromolecules. A processing not associated with lysosomes or endosomes. J Biol Chem. 1990 Nov 5;265(31):18780–18785. [PubMed] [Google Scholar]
- Feng Y., Forgac M. Inhibition of vacuolar H(+)-ATPase by disulfide bond formation between cysteine 254 and cysteine 532 in subunit A. J Biol Chem. 1994 May 6;269(18):13224–13230. [PubMed] [Google Scholar]
- Forgac M. Structure and properties of the vacuolar (H+)-ATPases. J Biol Chem. 1999 May 7;274(19):12951–12954. doi: 10.1074/jbc.274.19.12951. [DOI] [PubMed] [Google Scholar]
- Forgac M. Structure, function and regulation of the vacuolar (H+)-ATPases. FEBS Lett. 1998 Dec 4;440(3):258–263. doi: 10.1016/s0014-5793(98)01425-2. [DOI] [PubMed] [Google Scholar]
- Frand A. R., Cuozzo J. W., Kaiser C. A. Pathways for protein disulphide bond formation. Trends Cell Biol. 2000 May;10(5):203–210. doi: 10.1016/s0962-8924(00)01745-1. [DOI] [PubMed] [Google Scholar]
- Fuchs R., Schmid S., Mellman I. A possible role for Na+,K+-ATPase in regulating ATP-dependent endosome acidification. Proc Natl Acad Sci U S A. 1989 Jan;86(2):539–543. doi: 10.1073/pnas.86.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futai M., Oka T., Moriyama Y., Wada Y. Diverse roles of single membrane organelles: factors establishing the acid lumenal pH. J Biochem. 1998 Aug;124(2):259–267. doi: 10.1093/oxfordjournals.jbchem.a022105. [DOI] [PubMed] [Google Scholar]
- Gahl W. A., Tietze F. pH effects on cystine transport in lysosome-rich leucocyte granular fractions. Biochem J. 1985 May 15;228(1):263–267. doi: 10.1042/bj2280263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gainey D., Short S., McCoy K. L. Intracellular location of cysteine transport activity correlates with productive processing of antigen disulfide. J Cell Physiol. 1996 Aug;168(2):248–254. doi: 10.1002/(SICI)1097-4652(199608)168:2<248::AID-JCP3>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
- Gaullier J. M., Gillooly D., Simonsen A., Stenmark H. Regulation of endocytic membrane traffic by phosphatidylinositol 3-phosphate. Biochem Soc Trans. 1999 Aug;27(4):666–670. doi: 10.1042/bst0270666. [DOI] [PubMed] [Google Scholar]
- Ghosh R. N., Gelman D. L., Maxfield F. R. Quantification of low density lipoprotein and transferrin endocytic sorting HEp2 cells using confocal microscopy. J Cell Sci. 1994 Aug;107(Pt 8):2177–2189. doi: 10.1242/jcs.107.8.2177. [DOI] [PubMed] [Google Scholar]
- Gille L., Nohl H. The existence of a lysosomal redox chain and the role of ubiquinone. Arch Biochem Biophys. 2000 Mar 15;375(2):347–354. doi: 10.1006/abbi.1999.1649. [DOI] [PubMed] [Google Scholar]
- Gordon P. B., Holen I., Fosse M., Røtnes J. S., Seglen P. O. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem. 1993 Dec 15;268(35):26107–26112. [PubMed] [Google Scholar]
- Gordon P. B., Seglen P. O. Prelysosomal convergence of autophagic and endocytic pathways. Biochem Biophys Res Commun. 1988 Feb 29;151(1):40–47. doi: 10.1016/0006-291x(88)90556-6. [DOI] [PubMed] [Google Scholar]
- Gruenberg J., Griffiths G., Howell K. E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J Cell Biol. 1989 Apr;108(4):1301–1316. doi: 10.1083/jcb.108.4.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gruenberg J. The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol. 2001 Oct;2(10):721–730. doi: 10.1038/35096054. [DOI] [PubMed] [Google Scholar]
- Guarnieri F. G., Arterburn L. M., Penno M. B., Cha Y., August J. T. The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein 1. J Biol Chem. 1993 Jan 25;268(3):1941–1946. [PubMed] [Google Scholar]
- Haller T., Völkl H., Deetjen P., Dietl P. The lysosomal Ca2+ pool in MDCK cells can be released by ins(1,4,5)P3-dependent hormones or thapsigargin but does not activate store-operated Ca2+ entry. Biochem J. 1996 Nov 1;319(Pt 3):909–912. doi: 10.1042/bj3190909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hampl J., Gradehandt G., Kalbacher H., Rüde E. In vitro processing of insulin for recognition by murine T cells results in the generation of A chains with free CysSH. J Immunol. 1992 May 1;148(9):2664–2671. [PubMed] [Google Scholar]
- Hasilik A. The early and late processing of lysosomal enzymes: proteolysis and compartmentation. Experientia. 1992 Feb 15;48(2):130–151. doi: 10.1007/BF01923507. [DOI] [PubMed] [Google Scholar]
- Hasnain S., Hirama T., Tam A., Mort J. S. Characterization of recombinant rat cathepsin B and nonglycosylated mutants expressed in yeast. New insights into the pH dependence of cathepsin B-catalyzed hydrolyses. J Biol Chem. 1992 Mar 5;267(7):4713–4721. [PubMed] [Google Scholar]
- Henning R., Plattner H., Stoffel W. Nature and localization of acidic groups on lysosomal membranes. Biochim Biophys Acta. 1973 Nov 30;330(1):61–75. doi: 10.1016/0005-2736(73)90284-8. [DOI] [PubMed] [Google Scholar]
- Hopkins C. R., Gibson A., Shipman M., Strickland D. K., Trowbridge I. S. In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J Cell Biol. 1994 Jun;125(6):1265–1274. doi: 10.1083/jcb.125.6.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
- Jaconi M. E., Lew D. P., Carpentier J. L., Magnusson K. E., Sjögren M., Stendahl O. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J Cell Biol. 1990 May;110(5):1555–1564. doi: 10.1083/jcb.110.5.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jadot M., Dubois F., Wattiaux-De Coninck S., Wattiaux R. Supramolecular assemblies from lysosomal matrix proteins and complex lipids. Eur J Biochem. 1997 Nov 1;249(3):862–869. doi: 10.1111/j.1432-1033.1997.t01-1-00862.x. [DOI] [PubMed] [Google Scholar]
- Jahraus A., Tjelle T. E., Berg T., Habermann A., Storrie B., Ullrich O., Griffiths G. In vitro fusion of phagosomes with different endocytic organelles from J774 macrophages. J Biol Chem. 1998 Nov 13;273(46):30379–30390. doi: 10.1074/jbc.273.46.30379. [DOI] [PubMed] [Google Scholar]
- Karlsson K., Carlsson S. R. Sorting of lysosomal membrane glycoproteins lamp-1 and lamp-2 into vesicles distinct from mannose 6-phosphate receptor/gamma-adaptin vesicles at the trans-Golgi network. J Biol Chem. 1998 Jul 24;273(30):18966–18973. doi: 10.1074/jbc.273.30.18966. [DOI] [PubMed] [Google Scholar]
- Khouri H. E., Plouffe C., Hasnain S., Hirama T., Storer A. C., Ménard R. A model to explain the pH-dependent specificity of cathepsin B-catalysed hydrolyses. Biochem J. 1991 May 1;275(Pt 3):751–757. doi: 10.1042/bj2750751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Killisch I., Steinlein P., Römisch K., Hollinshead R., Beug H., Griffiths G. Characterization of early and late endocytic compartments of the transferrin cycle. Transferrin receptor antibody blocks erythroid differentiation by trapping the receptor in the early endosome. J Cell Sci. 1992 Sep;103(Pt 1):211–232. doi: 10.1242/jcs.103.1.211. [DOI] [PubMed] [Google Scholar]
- Kim J., Klionsky D. J. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem. 2000;69:303–342. doi: 10.1146/annurev.biochem.69.1.303. [DOI] [PubMed] [Google Scholar]
- Kirisako T., Baba M., Ishihara N., Miyazawa K., Ohsumi M., Yoshimori T., Noda T., Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol. 1999 Oct 18;147(2):435–446. doi: 10.1083/jcb.147.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kominami E., Hashida S., Khairallah E. A., Katunuma N. Sequestration of cytoplasmic enzymes in an autophagic vacuole-lysosomal system induced by injection of leupeptin. J Biol Chem. 1983 May 25;258(10):6093–6100. [PubMed] [Google Scholar]
- Kooistra T., Millard P. C., Lloyd J. B. Role of thiols in degradation of proteins by cathepsins. Biochem J. 1982 May 15;204(2):471–477. doi: 10.1042/bj2040471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornfeld S. Trafficking of lysosomal enzymes in normal and disease states. J Clin Invest. 1986 Jan;77(1):1–6. doi: 10.1172/JCI112262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kostoulas G., Hörler D., Naggi A., Casu B., Baici A. Electrostatic interactions between human leukocyte elastase and sulfated glycosaminoglycans: physiological implications. Biol Chem. 1997 Dec;378(12):1481–1489. doi: 10.1515/bchm.1997.378.12.1481. [DOI] [PubMed] [Google Scholar]
- Krepela E., Procházka J., Kárová B., Cermák J., Roubková H. Cathepsin B, thiols and cysteine protease inhibitors in squamous-cell lung cancer. Neoplasma. 1997;44(4):219–239. [PubMed] [Google Scholar]
- Krepela E., Procházka J., Kárová B. Regulation of cathepsin B activity by cysteine and related thiols. Biol Chem. 1999 May;380(5):541–551. doi: 10.1515/BC.1999.069. [DOI] [PubMed] [Google Scholar]
- Kwiatkowska K., Sobota A. Signaling pathways in phagocytosis. Bioessays. 1999 May;21(5):422–431. doi: 10.1002/(SICI)1521-1878(199905)21:5<422::AID-BIES9>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Lamaze C., Chuang T. H., Terlecky L. J., Bokoch G. M., Schmid S. L. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature. 1996 Jul 11;382(6587):177–179. doi: 10.1038/382177a0. [DOI] [PubMed] [Google Scholar]
- Lawrence B. P., Brown W. J. Autophagic vacuoles rapidly fuse with pre-existing lysosomes in cultured hepatocytes. J Cell Sci. 1992 Jul;102(Pt 3):515–526. doi: 10.1242/jcs.102.3.515. [DOI] [PubMed] [Google Scholar]
- Lemons R. M., Thoene J. G. Mediated calcium transport by isolated human fibroblast lysosomes. J Biol Chem. 1991 Aug 5;266(22):14378–14382. [PubMed] [Google Scholar]
- Lloyd J. B. Lysosomal handling of cystine residues: stoichiometry of cysteine involvement. Biochem J. 1992 Sep 15;286(Pt 3):979–980. doi: 10.1042/bj2860979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig T., Le Borgne R., Hoflack B. Roles for mannose-6-phosphate receptors in lysosomal enzyme sorting, IGF-II binding and clathrin-coat assembly. Trends Cell Biol. 1995 May;5(5):202–206. doi: 10.1016/s0962-8924(00)89000-5. [DOI] [PubMed] [Google Scholar]
- Lukong K. E., Elsliger M. A., Mort J. S., Potier M., Pshezhetsky A. V. Identification of UDP-N-acetylglucosamine-phosphotransferase-binding sites on the lysosomal proteases, cathepsins A, B, and D. Biochemistry. 1999 Jan 5;38(1):73–80. doi: 10.1021/bi981324r. [DOI] [PubMed] [Google Scholar]
- Luzio J. P., Rous B. A., Bright N. A., Pryor P. R., Mullock B. M., Piper R. C. Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci. 2000 May;113(Pt 9):1515–1524. doi: 10.1242/jcs.113.9.1515. [DOI] [PubMed] [Google Scholar]
- Malik Z. A., Iyer S. S., Kusner D. J. Mycobacterium tuberculosis phagosomes exhibit altered calmodulin-dependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J Immunol. 2001 Mar 1;166(5):3392–3401. doi: 10.4049/jimmunol.166.5.3392. [DOI] [PubMed] [Google Scholar]
- Martinez I., Chakrabarti S., Hellevik T., Morehead J., Fowler K., Andrews N. W. Synaptotagmin VII regulates Ca(2+)-dependent exocytosis of lysosomes in fibroblasts. J Cell Biol. 2000 Mar 20;148(6):1141–1149. doi: 10.1083/jcb.148.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matozaki T., Nakanishi H., Takai Y. Small G-protein networks: their crosstalk and signal cascades. Cell Signal. 2000 Aug;12(8):515–524. doi: 10.1016/s0898-6568(00)00102-9. [DOI] [PubMed] [Google Scholar]
- May R. C., Machesky L. M. Phagocytosis and the actin cytoskeleton. J Cell Sci. 2001 Mar;114(Pt 6):1061–1077. doi: 10.1242/jcs.114.6.1061. [DOI] [PubMed] [Google Scholar]
- Mayorga L. S., Bertini F., Stahl P. D. Fusion of newly formed phagosomes with endosomes in intact cells and in a cell-free system. J Biol Chem. 1991 Apr 5;266(10):6511–6517. [PubMed] [Google Scholar]
- Mego J. L. Role of thiols, pH and cathepsin D in the lysosomal catabolism of serum albumin. Biochem J. 1984 Mar 15;218(3):775–783. doi: 10.1042/bj2180775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways. Annu Rev Biochem. 1986;55:663–700. doi: 10.1146/annurev.bi.55.070186.003311. [DOI] [PubMed] [Google Scholar]
- Mellman I. The importance of being acid: the role of acidification in intracellular membrane traffic. J Exp Biol. 1992 Nov;172:39–45. doi: 10.1242/jeb.172.1.39. [DOI] [PubMed] [Google Scholar]
- Merkel B. J., Mandel R., Ryser H. J., McCoy K. L. Characterization of fibroblasts with a unique defect in processing antigens with disulfide bonds. J Immunol. 1995 Jan 1;154(1):128–136. [PubMed] [Google Scholar]
- Miaczynska Marta, Zerial Marino. Mosaic organization of the endocytic pathway. Exp Cell Res. 2002 Jan 1;272(1):8–14. doi: 10.1006/excr.2001.5401. [DOI] [PubMed] [Google Scholar]
- Miura K., Miyazawa S., Furuta S., Mitsushita J., Kamijo K., Ishida H., Miki T., Suzukawa K., Resau J., Copeland T. D. The Sos1-Rac1 signaling. Possible involvement of a vacuolar H(+)-ATPase E subunit. J Biol Chem. 2001 Sep 17;276(49):46276–46283. doi: 10.1074/jbc.M102387200. [DOI] [PubMed] [Google Scholar]
- Mizushima N., Sugita H., Yoshimori T., Ohsumi Y. A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem. 1998 Dec 18;273(51):33889–33892. doi: 10.1074/jbc.273.51.33889. [DOI] [PubMed] [Google Scholar]
- Moin K., Day N. A., Sameni M., Hasnain S., Hirama T., Sloane B. F. Human tumour cathepsin B. Comparison with normal liver cathepsin B. Biochem J. 1992 Jul 15;285(Pt 2):427–434. doi: 10.1042/bj2850427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moriyama Y., Maeda M., Futai M. Involvement of a non-proton pump factor (possibly Donnan-type equilibrium) in maintenance of an acidic pH in lysosomes. FEBS Lett. 1992 May 4;302(1):18–20. doi: 10.1016/0014-5793(92)80274-k. [DOI] [PubMed] [Google Scholar]
- Mortimore G. E., Hutson N. J., Surmacz C. A. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2179–2183. doi: 10.1073/pnas.80.8.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mortimore G. E., Lardeux B. R., Adams C. E. Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. J Biol Chem. 1988 Feb 15;263(5):2506–2512. [PubMed] [Google Scholar]
- Moskaug J. O., Sandvig K., Olsnes S. Cell-mediated reduction of the interfragment disulfide in nicked diphtheria toxin. A new system to study toxin entry at low pH. J Biol Chem. 1987 Jul 25;262(21):10339–10345. [PubMed] [Google Scholar]
- Mullock B. M., Bright N. A., Fearon C. W., Gray S. R., Luzio J. P. Fusion of lysosomes with late endosomes produces a hybrid organelle of intermediate density and is NSF dependent. J Cell Biol. 1998 Feb 9;140(3):591–601. doi: 10.1083/jcb.140.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy R. F. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1991 Oct;1(4):77–82. doi: 10.1016/0962-8924(91)90022-2. [DOI] [PubMed] [Google Scholar]
- Méresse S., Gorvel J. P., Chavrier P. The rab7 GTPase resides on a vesicular compartment connected to lysosomes. J Cell Sci. 1995 Nov;108(Pt 11):3349–3358. doi: 10.1242/jcs.108.11.3349. [DOI] [PubMed] [Google Scholar]
- Ogier-Denis E., Couvineau A., Maoret J. J., Houri J. J., Bauvy C., De Stefanis D., Isidoro C., Laburthe M., Codogno P. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem. 1995 Jan 6;270(1):13–16. doi: 10.1074/jbc.270.1.13. [DOI] [PubMed] [Google Scholar]
- Ogier-Denis E., Houri J. J., Bauvy C., Codogno P. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J Biol Chem. 1996 Nov 8;271(45):28593–28600. doi: 10.1074/jbc.271.45.28593. [DOI] [PubMed] [Google Scholar]
- Peters C., von Figura K. Biogenesis of lysosomal membranes. FEBS Lett. 1994 Jun 6;346(1):108–114. doi: 10.1016/0014-5793(94)00499-4. [DOI] [PubMed] [Google Scholar]
- Petiot A., Ogier-Denis E., Bauvy C., Cluzeaud F., Vandewalle A., Codogno P. Subcellular localization of the Galphai3 protein and G alpha interacting protein, two proteins involved in the control of macroautophagy in human colon cancer HT-29 cells. Biochem J. 1999 Jan 15;337(Pt 2):289–295. [PMC free article] [PubMed] [Google Scholar]
- Pfeifer U. Inhibition by insulin of the formation of autophagic vacuoles in rat liver. A morphometric approach to the kinetics of intracellular degradation by autophagy. J Cell Biol. 1978 Jul;78(1):152–167. doi: 10.1083/jcb.78.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pisoni R. L., Acker T. L., Lisowski K. M., Lemons R. M., Thoene J. G. A cysteine-specific lysosomal transport system provides a major route for the delivery of thiol to human fibroblast lysosomes: possible role in supporting lysosomal proteolysis. J Cell Biol. 1990 Feb;110(2):327–335. doi: 10.1083/jcb.110.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pisoni R. L., Thoene J. G. The transport systems of mammalian lysosomes. Biochim Biophys Acta. 1991 Dec 12;1071(4):351–373. doi: 10.1016/0304-4157(91)90002-e. [DOI] [PubMed] [Google Scholar]
- Pisoni R. L., Velilla V. Q. Evidence for an essential histidine residue located in the binding site of the cysteine-specific lysosomal transport protein. Biochim Biophys Acta. 1995 May 24;1236(1):23–30. doi: 10.1016/0005-2736(95)00039-6. [DOI] [PubMed] [Google Scholar]
- Pitt A., Mayorga L. S., Schwartz A. L., Stahl P. D. Transport of phagosomal components to an endosomal compartment. J Biol Chem. 1992 Jan 5;267(1):126–132. [PubMed] [Google Scholar]
- Pryor P. R., Mullock B. M., Bright N. A., Gray S. R., Luzio J. P. The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol. 2000 May 29;149(5):1053–1062. doi: 10.1083/jcb.149.5.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qualmann B., Kessels M. M., Kelly R. B. Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol. 2000 Sep 4;150(5):F111–F116. doi: 10.1083/jcb.150.5.f111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabinowitz S., Horstmann H., Gordon S., Griffiths G. Immunocytochemical characterization of the endocytic and phagolysosomal compartments in peritoneal macrophages. J Cell Biol. 1992 Jan;116(1):95–112. doi: 10.1083/jcb.116.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rabouille C., Strous G. J., Crapo J. D., Geuze H. J., Slot J. W. The differential degradation of two cytosolic proteins as a tool to monitor autophagy in hepatocytes by immunocytochemistry. J Cell Biol. 1993 Feb;120(4):897–908. doi: 10.1083/jcb.120.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reddy A., Caler E. V., Andrews N. W. Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell. 2001 Jul 27;106(2):157–169. doi: 10.1016/s0092-8674(01)00421-4. [DOI] [PubMed] [Google Scholar]
- Reijngoud D. J., Tager J. M. The permeability properties of the lysosomal membrane. Biochim Biophys Acta. 1977 Nov 14;472(3-4):419–449. doi: 10.1016/0304-4157(77)90005-3. [DOI] [PubMed] [Google Scholar]
- Sechi A. S., Wehland J. The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane. J Cell Sci. 2000 Nov;113(Pt 21):3685–3695. doi: 10.1242/jcs.113.21.3685. [DOI] [PubMed] [Google Scholar]
- Seglen P. O., Bohley P. Autophagy and other vacuolar protein degradation mechanisms. Experientia. 1992 Feb 15;48(2):158–172. doi: 10.1007/BF01923509. [DOI] [PubMed] [Google Scholar]
- Silverstein R. L., Febbraio M. Identification of lysosome-associated membrane protein-2 as an activation-dependent platelet surface glycoprotein. Blood. 1992 Sep 15;80(6):1470–1475. [PubMed] [Google Scholar]
- Storer A. C., Ménard R. Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol. 1994;244:486–500. doi: 10.1016/0076-6879(94)44035-2. [DOI] [PubMed] [Google Scholar]
- Storrie B., Desjardins M. The biogenesis of lysosomes: is it a kiss and run, continuous fusion and fission process? Bioessays. 1996 Nov;18(11):895–903. doi: 10.1002/bies.950181108. [DOI] [PubMed] [Google Scholar]
- Strømhaug P. E., Seglen P. O. Evidence for acidity of prelysosomal autophagic/endocytic vacuoles (amphisomes). Biochem J. 1993 Apr 1;291(Pt 1):115–121. doi: 10.1042/bj2910115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturgill-Koszycki S., Schlesinger P. H., Chakraborty P., Haddix P. L., Collins H. L., Fok A. K., Allen R. D., Gluck S. L., Heuser J., Russell D. G. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science. 1994 Feb 4;263(5147):678–681. doi: 10.1126/science.8303277. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Guhde G., Suter A., Eskelinen E. L., Hartmann D., Lüllmann-Rauch R., Janssen P. M., Blanz J., von Figura K., Saftig P. Accumulation of autophagic vacuoles and cardiomyopathy in LAMP-2-deficient mice. Nature. 2000 Aug 24;406(6798):902–906. doi: 10.1038/35022595. [DOI] [PubMed] [Google Scholar]
- Thilo L., Stroud E., Haylett T. Maturation of early endosomes and vesicular traffic to lysosomes in relation to membrane recycling. J Cell Sci. 1995 Apr;108(Pt 4):1791–1803. doi: 10.1242/jcs.108.4.1791. [DOI] [PubMed] [Google Scholar]
- Tikkanen R., Peltola M., Oinonen C., Rouvinen J., Peltonen L. Several cooperating binding sites mediate the interaction of a lysosomal enzyme with phosphotransferase. EMBO J. 1997 Nov 17;16(22):6684–6693. doi: 10.1093/emboj/16.22.6684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjelle T. E., Brech A., Juvet L. K., Griffiths G., Berg T. Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci. 1996 Dec;109(Pt 12):2905–2914. doi: 10.1242/jcs.109.12.2905. [DOI] [PubMed] [Google Scholar]
- Tooze J., Hollinshead M., Ludwig T., Howell K., Hoflack B., Kern H. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol. 1990 Aug;111(2):329–345. doi: 10.1083/jcb.111.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Via L. E., Deretic D., Ulmer R. J., Hibler N. S., Huber L. A., Deretic V. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem. 1997 May 16;272(20):13326–13331. doi: 10.1074/jbc.272.20.13326. [DOI] [PubMed] [Google Scholar]
- Ward D. M., Leslie J. D., Kaplan J. Homotypic lysosome fusion in macrophages: analysis using an in vitro assay. J Cell Biol. 1997 Nov 3;139(3):665–673. doi: 10.1083/jcb.139.3.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warnock D. G. Regulation of endosomal acidification via Gi-type protein. Kidney Int. 1999 Jun;55(6):2524–2525. doi: 10.1046/j.1523-1755.1999.00505.x. [DOI] [PubMed] [Google Scholar]
- Wilcox D., Mason R. W. Inhibition of cysteine proteinases in lysosomes and whole cells. Biochem J. 1992 Jul 15;285(Pt 2):495–502. doi: 10.1042/bj2850495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willenbrock F., Brocklehurst K. A general framework of cysteine-proteinase mechanism deduced from studies on enzymes with structurally different analogous catalytic-site residues Asp-158 and -161 (papain and actinidin), Gly-196 (cathepsin B) and Asn-165 (cathepsin H). Kinetic studies up to pH 8 of the hydrolysis of N-alpha-benzyloxycarbonyl-L-arginyl-L-arginine 2-naphthylamide catalysed by cathepsin B and of L-arginine 2-naphthylamide catalysed by cathepsin H. Biochem J. 1985 Apr 15;227(2):521–528. doi: 10.1042/bj2270521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto A., Masaki R., Fukui Y., Tashiro Y. Absence of cytochrome P-450 and presence of autolysosomal membrane antigens on the isolation membranes and autophagosomal membranes in rat hepatocytes. J Histochem Cytochem. 1990 Nov;38(11):1571–1581. doi: 10.1177/38.11.2212617. [DOI] [PubMed] [Google Scholar]
- Yamamoto A., Masaki R., Tashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. J Histochem Cytochem. 1990 Apr;38(4):573–580. doi: 10.1177/38.4.2319125. [DOI] [PubMed] [Google Scholar]
- de Duve C. Lysosomes revisited. Eur J Biochem. 1983 Dec 15;137(3):391–397. doi: 10.1111/j.1432-1033.1983.tb07841.x. [DOI] [PubMed] [Google Scholar]
- van Oss C. J. Phagocytosis: an overview. Methods Enzymol. 1986;132:3–15. doi: 10.1016/s0076-6879(86)32003-2. [DOI] [PubMed] [Google Scholar]