Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):483–491. doi: 10.1042/0264-6021:3630483

Sensitive and real-time determination of H2O2 release from intact peroxisomes.

Sebastian Mueller 1, Angelika Weber 1, Reiner Fritz 1, Sabine Mütze 1, Daniel Rost 1, Henning Walczak 1, Alfred Völkl 1, Wolfgang Stremmel 1
PMCID: PMC1222500  PMID: 11964148

Abstract

Peroxisomes are essential and ubiquitous cell organelles having a key role in mammalian lipid and oxygen metabolism. The presence of flavine oxidases makes them an important intracellular source of H(2)O(2): an obligate product of peroxisomal redox reactions and a key reactive oxygen species. Peroxisomes proliferate in response to external signals triggered by peroxisome-proliferator-activated receptor signalling pathways. Peroxisome-derived oxidative stress as a consequence of this proliferation is increasingly recognized to participate in pathologies ranging from carcinogenesis in rodents to alcoholic and non-alcoholic steatosis hepatitis in humans. To date, no sensitive approach exists to record H(2)O(2) turnover of peroxisomes in real time. Here, we introduce a sensitive chemiluminescence method that allows the monitoring of H(2)O(2) generation and degradation in real time in suspensions of intact peroxisomes. Importantly, removal, as well as release of, H(2)O(2) can be assessed at nanomolar, non-toxic concentrations in the same sample. Owing to the kinetic properties of catalase and oxidases, H(2)O(2) forms fast steady-state concentrations in the presence of various peroxisomal substrates. Substrate screening suggests that urate, glycolate and activated fatty acids are the most important sources for H(2)O(2) in rodents. Kinetic studies imply further that peroxisomes contribute significantly to the beta-oxidation of medium-chain fatty acids, in addition to their essential role in the breakdown of long and very long ones. These observations establish a direct quantitative release of H(2)O(2) from intact peroxisomes. The experimental approach offers new possibilities for functionally studying H(2)O(2) metabolism, substrate transport and turnover in peroxisomes of eukaryotic cells.

Full Text

The Full Text of this article is available as a PDF (203.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3. [DOI] [PubMed] [Google Scholar]
  2. Angermüller S., Fahimi H. D. Selective cytochemical localization of peroxidase, cytochrome oxidase and catalase in rat liver with 3,3'-diaminobenzidine. Histochemistry. 1981;71(1):33–44. doi: 10.1007/BF00592568. [DOI] [PubMed] [Google Scholar]
  3. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  4. Breidenbach R. W., Beevers H. Association of the glyoxylate cycle enzymes in a novel subcellular particle from castor bean endosperm. Biochem Biophys Res Commun. 1967 May 25;27(4):462–469. doi: 10.1016/s0006-291x(67)80007-x. [DOI] [PubMed] [Google Scholar]
  5. Burdon R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995 Apr;18(4):775–794. doi: 10.1016/0891-5849(94)00198-s. [DOI] [PubMed] [Google Scholar]
  6. Cadenas E. Biochemistry of oxygen toxicity. Annu Rev Biochem. 1989;58:79–110. doi: 10.1146/annurev.bi.58.070189.000455. [DOI] [PubMed] [Google Scholar]
  7. Cattley R. C., Glover S. E. Elevated 8-hydroxydeoxyguanosine in hepatic DNA of rats following exposure to peroxisome proliferators: relationship to carcinogenesis and nuclear localization. Carcinogenesis. 1993 Dec;14(12):2495–2499. doi: 10.1093/carcin/14.12.2495. [DOI] [PubMed] [Google Scholar]
  8. Chitturi S., Farrell G. C. Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis. 2001;21(1):27–41. doi: 10.1055/s-2001-12927. [DOI] [PubMed] [Google Scholar]
  9. Chu R., Lin Y., Reddy K. C., Pan J., Rao M. S., Reddy J. K., Yeldandi A. V. Transformation of epithelial cells stably transfected with H2O2-generating peroxisomal urate oxidase. Cancer Res. 1996 Nov 1;56(21):4846–4852. [PubMed] [Google Scholar]
  10. Chu R., Varanasi U., Chu S., Lin Y., Usuda N., Rao M. S., Reddy J. K. Overexpression and characterization of the human peroxisomal acyl-CoA oxidase in insect cells. J Biol Chem. 1995 Mar 3;270(9):4908–4915. doi: 10.1074/jbc.270.9.4908. [DOI] [PubMed] [Google Scholar]
  11. Crane D. I., Zamattia J., Masters C. J. Alterations in the integrity of peroxisomal membranes in livers of mice treated with peroxisome proliferators. Mol Cell Biochem. 1990 Aug 10;96(2):153–161. doi: 10.1007/BF00420907. [DOI] [PubMed] [Google Scholar]
  12. De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
  13. Debeer L. J., Mannaerts G. P. The mitochondrial and peroxisomal pathways of fatty acid oxidation in rat liver. Diabete Metab. 1983 May-Jun;9(2):134–140. [PubMed] [Google Scholar]
  14. Forss-Petter S., Werner H., Berger J., Lassmann H., Molzer B., Schwab M. H., Bernheimer H., Zimmermann F., Nave K. A. Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res. 1997 Dec 1;50(5):829–843. doi: 10.1002/(SICI)1097-4547(19971201)50:5<829::AID-JNR19>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  15. Hashimoto F., Furuya Y., Hayashi H. Accumulation of medium chain acyl-CoAs during beta-oxidation of long chain fatty acid by isolated peroxisomes from rat liver. Biol Pharm Bull. 2001 Jun;24(6):600–606. doi: 10.1248/bpb.24.600. [DOI] [PubMed] [Google Scholar]
  16. Hettema E. H., Tabak H. F. Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim Biophys Acta. 2000 Jun 26;1486(1):18–27. doi: 10.1016/s1388-1981(00)00045-7. [DOI] [PubMed] [Google Scholar]
  17. Kasai H., Okada Y., Nishimura S., Rao M. S., Reddy J. K. Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res. 1989 May 15;49(10):2603–2605. [PubMed] [Google Scholar]
  18. Kerner J., Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta. 2000 Jun 26;1486(1):1–17. doi: 10.1016/s1388-1981(00)00044-5. [DOI] [PubMed] [Google Scholar]
  19. Khan A. U., Wilson T. Reactive oxygen species as cellular messengers. Chem Biol. 1995 Jul;2(7):437–445. doi: 10.1016/1074-5521(95)90259-7. [DOI] [PubMed] [Google Scholar]
  20. Kondrup J., Lazarow P. B. Flux of palmitate through the peroxisomal and mitochondrial beta-oxidation systems in isolated rat hepatocytes. Biochim Biophys Acta. 1985 Jun 14;835(1):147–153. doi: 10.1016/0005-2760(85)90041-4. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lazarow P. B. Rat liver peroxisomes catalyze the beta oxidation of fatty acids. J Biol Chem. 1978 Mar 10;253(5):1522–1528. [PubMed] [Google Scholar]
  23. Li Y., Tharappel J. C., Cooper S., Glenn M., Glauert H. P., Spear B. T. Expression of the hydrogen peroxide-generating enzyme fatty acyl CoA oxidase activates NF-kappaB. DNA Cell Biol. 2000 Feb;19(2):113–120. doi: 10.1089/104454900314627. [DOI] [PubMed] [Google Scholar]
  24. Lumeng L., Crabb D. W. Alcoholic liver disease. Curr Opin Gastroenterol. 2000 May;16(3):208–218. doi: 10.1097/00001574-200005000-00003. [DOI] [PubMed] [Google Scholar]
  25. Makino N., Mochizuki Y., Bannai S., Sugita Y. Kinetic studies on the removal of extracellular hydrogen peroxide by cultured fibroblasts. J Biol Chem. 1994 Jan 14;269(2):1020–1025. [PubMed] [Google Scholar]
  26. Mannaerts G. P., Debeer L. J., Thomas J., De Schepper P. J. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats. J Biol Chem. 1979 Jun 10;254(11):4585–4595. [PubMed] [Google Scholar]
  27. Meyer M., Pahl H. L., Baeuerle P. A. Regulation of the transcription factors NF-kappa B and AP-1 by redox changes. Chem Biol Interact. 1994 Jun;91(2-3):91–100. doi: 10.1016/0009-2797(94)90029-9. [DOI] [PubMed] [Google Scholar]
  28. Mueller S., Arnhold J. Fast and sensitive chemiluminescence determination of H2O2 concentration in stimulated human neutrophils. J Biolumin Chemilumin. 1995 Jul-Aug;10(4):229–237. doi: 10.1002/bio.1170100406. [DOI] [PubMed] [Google Scholar]
  29. Mueller S., Pantopoulos K., Hübner C. A., Stremmel W., Hentze M. W. IRP1 activation by extracellular oxidative stress in the perfused rat liver. J Biol Chem. 2001 Apr 10;276(25):23192–23196. doi: 10.1074/jbc.M100654200. [DOI] [PubMed] [Google Scholar]
  30. Mueller S., Riedel H. D., Stremmel W. Determination of catalase activity at physiological hydrogen peroxide concentrations. Anal Biochem. 1997 Feb 1;245(1):55–60. doi: 10.1006/abio.1996.9939. [DOI] [PubMed] [Google Scholar]
  31. Mueller S., Riedel H. D., Stremmel W. Direct evidence for catalase as the predominant H2O2 -removing enzyme in human erythrocytes. Blood. 1997 Dec 15;90(12):4973–4978. [PubMed] [Google Scholar]
  32. Mueller S. Sensitive and nonenzymatic measurement of hydrogen peroxide in biological systems. Free Radic Biol Med. 2000 Sep 1;29(5):410–415. doi: 10.1016/s0891-5849(00)00261-6. [DOI] [PubMed] [Google Scholar]
  33. NICHOLLS P. ACTIVITY OF CATALASE IN THE RED CELL. Biochim Biophys Acta. 1965 May 18;99:286–297. doi: 10.1016/s0926-6593(65)80125-4. [DOI] [PubMed] [Google Scholar]
  34. Osumi T., Hashimoto T. Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation. Biochem Biophys Res Commun. 1978 Jul 28;83(2):479–485. doi: 10.1016/0006-291x(78)91015-x. [DOI] [PubMed] [Google Scholar]
  35. Pantopoulos K., Mueller S., Atzberger A., Ansorge W., Stremmel W., Hentze M. W. Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra- and intracellular oxidative stress. J Biol Chem. 1997 Apr 11;272(15):9802–9808. doi: 10.1074/jbc.272.15.9802. [DOI] [PubMed] [Google Scholar]
  36. Qu B., Li Q. T., Wong K. P., Ong C. N., Halliwell B. Mitochondrial damage by the "pro-oxidant" peroxisomal proliferator clofibrate. Free Radic Biol Med. 1999 Nov;27(9-10):1095–1102. doi: 10.1016/s0891-5849(99)00143-4. [DOI] [PubMed] [Google Scholar]
  37. Rao M. S., Reddy J. K. Peroxisomal beta-oxidation and steatohepatitis. Semin Liver Dis. 2001;21(1):43–55. doi: 10.1055/s-2001-12928. [DOI] [PubMed] [Google Scholar]
  38. Reddy J. K., Azarnoff D. L., Hignite C. E. Hypolipidaemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature. 1980 Jan 24;283(5745):397–398. doi: 10.1038/283397a0. [DOI] [PubMed] [Google Scholar]
  39. Rusyn I., Rose M. L., Bojes H. K., Thurman R. G. Novel role of oxidants in the molecular mechanism of action of peroxisome proliferators. Antioxid Redox Signal. 2000 Fall;2(3):607–621. doi: 10.1089/15230860050192350. [DOI] [PubMed] [Google Scholar]
  40. Singh I. Biochemistry of peroxisomes in health and disease. Mol Cell Biochem. 1997 Feb;167(1-2):1–29. doi: 10.1023/a:1006883229684. [DOI] [PubMed] [Google Scholar]
  41. Singh I., Lazo O., Dhaunsi G. S., Contreras M. Transport of fatty acids into human and rat peroxisomes. Differential transport of palmitic and lignoceric acids and its implication to X-adrenoleukodystrophy. J Biol Chem. 1992 Jul 5;267(19):13306–13313. [PubMed] [Google Scholar]
  42. Singh I. Mammalian peroxisomes: metabolism of oxygen and reactive oxygen species. Ann N Y Acad Sci. 1996 Dec 27;804:612–627. doi: 10.1111/j.1749-6632.1996.tb18648.x. [DOI] [PubMed] [Google Scholar]
  43. Spiegelman B. M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes. 1998 Apr;47(4):507–514. doi: 10.2337/diabetes.47.4.507. [DOI] [PubMed] [Google Scholar]
  44. Test S. T., Weiss S. J. Quantitative and temporal characterization of the extracellular H2O2 pool generated by human neutrophils. J Biol Chem. 1984 Jan 10;259(1):399–405. [PubMed] [Google Scholar]
  45. Völkl A., Fahimi H. D. Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem. 1985 Jun 3;149(2):257–265. doi: 10.1111/j.1432-1033.1985.tb08920.x. [DOI] [PubMed] [Google Scholar]
  46. Völkl A., Mohr H., Fahimi H. D. Peroxisome subpopulations of the rat liver. Isolation by immune free flow electrophoresis. J Histochem Cytochem. 1999 Sep;47(9):1111–1118. doi: 10.1177/002215549904700902. [DOI] [PubMed] [Google Scholar]
  47. van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES