Abstract
The activity and intracellular localization of protein kinase C (PKC) family members are controlled by phosphorylation at three highly conserved sites in the catalytic kinase domain. In the case of the novel PKCepsilon isoform, these are Thr(566) in the activation loop, Thr(710) in the turn motif and Ser(729) in the C-terminal hydrophobic motif. In the present study, we analysed the contribution of the phosphoinositide-dependent kinase 1 (PDK-1) and PKCepsilon kinase activity in controlling the phosphorylation of Thr(566) and Ser(729). In NIH 3T3 fibroblasts, PKCepsilon migrated as a single band, and stimulation with platelet-derived growth factor resulted in the appearance of a second band with a slower electrophoretic mobility, concomitant with an increase in phosphorylation of Thr(566) and Ser(729). Cells transfected with an active PDK-1 allele also resulted in increased PKCepsilon Thr(566) and Ser(729) phosphorylation, whereas an active myristoylated PKCepsilon mutant was constitutively phosphorylated at these sites. Protein kinase-inactive mutants of PKCepsilon were not phosphorylated at Ser(729) in cells, and phosphorylation of this site leads to dephosphorylation of the activation-loop Thr(566), an effect which can be reversed with either okadaic acid or co-transfection with active PDK-1. In vitro, PDK-1 catalysed the phosphorylation of purified PKCepsilon in the presence of mixed micelles containing either diacylglycerol or PtdIns(3,4,5)P(3), concomitant with an increase in Ser(729) phosphorylation. These studies reveal that the mechanism of phosphorylation of a novel PKC is the same as that for conventional PKCs: PDK-1 phosphorylation of the activation loop triggers autophosphorylation of the hydrophobic motif. However, the regulation of this phosphorylation is different for novel and conventional PKCs. Specifically, the phosphorylation of novel PKCs is regulated rather than constitutive.
Full Text
The Full Text of this article is available as a PDF (243.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., Andjelkovic M., Caudwell B., Cron P., Morrice N., Cohen P., Hemmings B. A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996 Dec 2;15(23):6541–6551. [PMC free article] [PubMed] [Google Scholar]
- Alessi D. R., James S. R., Downes C. P., Holmes A. B., Gaffney P. R., Reese C. B., Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol. 1997 Apr 1;7(4):261–269. doi: 10.1016/s0960-9822(06)00122-9. [DOI] [PubMed] [Google Scholar]
- Balendran A., Hare G. R., Kieloch A., Williams M. R., Alessi D. R. Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms. FEBS Lett. 2000 Nov 10;484(3):217–223. doi: 10.1016/s0014-5793(00)02162-1. [DOI] [PubMed] [Google Scholar]
- Behn-Krappa A., Newton A. C. The hydrophobic phosphorylation motif of conventional protein kinase C is regulated by autophosphorylation. Curr Biol. 1999 Jul 15;9(14):728–737. doi: 10.1016/s0960-9822(99)80332-7. [DOI] [PubMed] [Google Scholar]
- Berrier A. L., Mastrangelo A. M., Downward J., Ginsberg M., LaFlamme S. E. Activated R-ras, Rac1, PI 3-kinase and PKCepsilon can each restore cell spreading inhibited by isolated integrin beta1 cytoplasmic domains. J Cell Biol. 2000 Dec 25;151(7):1549–1560. doi: 10.1083/jcb.151.7.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biondi R. M., Cheung P. C., Casamayor A., Deak M., Currie R. A., Alessi D. R. Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J. 2000 Mar 1;19(5):979–988. doi: 10.1093/emboj/19.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bornancin F., Parker P. J. Phosphorylation of protein kinase C-alpha on serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J Biol Chem. 1997 Feb 7;272(6):3544–3549. doi: 10.1074/jbc.272.6.3544. [DOI] [PubMed] [Google Scholar]
- Bornancin F., Parker P. J. Phosphorylation of threonine 638 critically controls the dephosphorylation and inactivation of protein kinase Calpha. Curr Biol. 1996 Sep 1;6(9):1114–1123. doi: 10.1016/s0960-9822(02)70678-7. [DOI] [PubMed] [Google Scholar]
- Cacace A. M., Guadagno S. N., Krauss R. S., Fabbro D., Weinstein I. B. The epsilon isoform of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene. 1993 Aug;8(8):2095–2104. [PubMed] [Google Scholar]
- Cacace A. M., Ueffing M., Philipp A., Han E. K., Kolch W., Weinstein I. B. PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene. 1996 Dec 19;13(12):2517–2526. [PubMed] [Google Scholar]
- Chou C. K., Dull T. J., Russell D. S., Gherzi R., Lebwohl D., Ullrich A., Rosen O. M. Human insulin receptors mutated at the ATP-binding site lack protein tyrosine kinase activity and fail to mediate postreceptor effects of insulin. J Biol Chem. 1987 Feb 5;262(4):1842–1847. [PubMed] [Google Scholar]
- Chou M. M., Hou W., Johnson J., Graham L. K., Lee M. H., Chen C. S., Newton A. C., Schaffhausen B. S., Toker A. Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Curr Biol. 1998 Sep 24;8(19):1069–1077. doi: 10.1016/s0960-9822(98)70444-0. [DOI] [PubMed] [Google Scholar]
- Chun J. S., Ha M. J., Jacobson B. S. Differential translocation of protein kinase C epsilon during HeLa cell adhesion to a gelatin substratum. J Biol Chem. 1996 May 31;271(22):13008–13012. doi: 10.1074/jbc.271.22.13008. [DOI] [PubMed] [Google Scholar]
- Dutil E. M., Keranen L. M., DePaoli-Roach A. A., Newton A. C. In vivo regulation of protein kinase C by trans-phosphorylation followed by autophosphorylation. J Biol Chem. 1994 Nov 25;269(47):29359–29362. [PubMed] [Google Scholar]
- Dutil E. M., Toker A., Newton A. C. Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Curr Biol. 1998 Dec 17;8(25):1366–1375. doi: 10.1016/s0960-9822(98)00017-7. [DOI] [PubMed] [Google Scholar]
- England K., Rumsby M. G. Changes in protein kinase C epsilon phosphorylation status and intracellular localization as 3T3 and 3T6 fibroblasts grow to confluency and quiescence: a role for phosphorylation at ser-729? Biochem J. 2000 Nov 15;352(Pt 1):19–26. [PMC free article] [PubMed] [Google Scholar]
- England K., Watson J., Beale G., Warner M., Cross J., Rumsby M. Signalling pathways regulating the dephosphorylation of Ser729 in the hydrophobic domain of protein kinase Cepsilon upon cell passage. J Biol Chem. 2000 Dec 19;276(13):10437–10442. doi: 10.1074/jbc.M009421200. [DOI] [PubMed] [Google Scholar]
- Johnson J. E., Giorgione J., Newton A. C. The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain. Biochemistry. 2000 Sep 19;39(37):11360–11369. doi: 10.1021/bi000902c. [DOI] [PubMed] [Google Scholar]
- Keranen L. M., Dutil E. M., Newton A. C. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol. 1995 Dec 1;5(12):1394–1403. doi: 10.1016/s0960-9822(95)00277-6. [DOI] [PubMed] [Google Scholar]
- Le Good J. A., Ziegler W. H., Parekh D. B., Alessi D. R., Cohen P., Parker P. J. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science. 1998 Sep 25;281(5385):2042–2045. doi: 10.1126/science.281.5385.2042. [DOI] [PubMed] [Google Scholar]
- Mellor H., Parker P. J. The extended protein kinase C superfamily. Biochem J. 1998 Jun 1;332(Pt 2):281–292. doi: 10.1042/bj3320281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moriya S., Kazlauskas A., Akimoto K., Hirai S., Mizuno K., Takenawa T., Fukui Y., Watanabe Y., Ozaki S., Ohno S. Platelet-derived growth factor activates protein kinase C epsilon through redundant and independent signaling pathways involving phospholipase C gamma or phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):151–155. doi: 10.1073/pnas.93.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton A. C. Regulation of protein kinase C. Curr Opin Cell Biol. 1997 Apr;9(2):161–167. doi: 10.1016/s0955-0674(97)80058-0. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. FASEB J. 1995 Apr;9(7):484–496. [PubMed] [Google Scholar]
- Parekh D. B., Ziegler W., Parker P. J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 2000 Feb 15;19(4):496–503. doi: 10.1093/emboj/19.4.496. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parekh D., Ziegler W., Yonezawa K., Hara K., Parker P. J. Mammalian TOR controls one of two kinase pathways acting upon nPKCdelta and nPKCepsilon. J Biol Chem. 1999 Dec 3;274(49):34758–34764. doi: 10.1074/jbc.274.49.34758. [DOI] [PubMed] [Google Scholar]
- Prekeris R., Mayhew M. W., Cooper J. B., Terrian D. M. Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function. J Cell Biol. 1996 Jan;132(1-2):77–90. doi: 10.1083/jcb.132.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schönwasser D. C., Marais R. M., Marshall C. J., Parker P. J. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol. 1998 Feb;18(2):790–798. doi: 10.1128/mcb.18.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Standaert M. L., Bandyopadhyay G., Kanoh Y., Sajan M. P., Farese R. V. Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T410) and autophosphorylation (T560) sites. Biochemistry. 2001 Jan 9;40(1):249–255. doi: 10.1021/bi0018234. [DOI] [PubMed] [Google Scholar]
- Stokoe D., Stephens L. R., Copeland T., Gaffney P. R., Reese C. B., Painter G. F., Holmes A. B., McCormick F., Hawkins P. T. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997 Jul 25;277(5325):567–570. doi: 10.1126/science.277.5325.567. [DOI] [PubMed] [Google Scholar]
- Toker A., Newton A. C. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem. 2000 Mar 24;275(12):8271–8274. doi: 10.1074/jbc.275.12.8271. [DOI] [PubMed] [Google Scholar]
- Toker A., Newton A. C. Cellular signaling: pivoting around PDK-1. Cell. 2000 Oct 13;103(2):185–188. doi: 10.1016/s0092-8674(00)00110-0. [DOI] [PubMed] [Google Scholar]
- Toker A. Signaling through protein kinase C. Front Biosci. 1998 Nov 1;3:D1134–D1147. doi: 10.2741/a350. [DOI] [PubMed] [Google Scholar]
- Ziegler W. H., Parekh D. B., Le Good J. A., Whelan R. D., Kelly J. J., Frech M., Hemmings B. A., Parker P. J. Rapamycin-sensitive phosphorylation of PKC on a carboxy-terminal site by an atypical PKC complex. Curr Biol. 1999 May 20;9(10):522–529. doi: 10.1016/s0960-9822(99)80236-x. [DOI] [PubMed] [Google Scholar]