Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):563–570. doi: 10.1042/0264-6021:3630563

Type IIalpha phosphatidylinositol phosphate kinase associates with the plasma membrane via interaction with type I isoforms.

Katherine A Hinchliffe 1, Maria Luisa Giudici 1, Andrew J Letcher 1, Robin F Irvine 1
PMCID: PMC1222509  PMID: 11964157

Abstract

The phosphatidylinositol phosphate kinases (PIPkins) are a family of enzymes involved in regulating levels of several functionally important inositol phospholipids within cells. The PIPkin family is subdivided into three on the basis of substrate specificity, each subtype presumably regulating levels of different subsets of the inositol lipids. The physiological function of the type II isoforms, which exhibit a preference for phosphatidylinositol 5-phosphate, a lipid about which very little is known, is particularly poorly understood. In the present study, we demonstrate interaction between, and co-immunoprecipitation of, type IIalpha PIPkin with the related, but biochemically and immunologically distinct, type I PIPkin isoforms. Type IIalpha PIPkin interacts with all three known type I PIPkins (alpha, beta and gamma), and in each case co-expression of the type I isoform with type IIalpha results in recruitment of the latter from the cytosol to the plasma membrane of the cell. This change in subcellular localization could result in improved access of the type IIalpha PIPkin to its lipid substrates.

Full Text

The Full Text of this article is available as a PDF (249.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banfić H., Downes C. P., Rittenhouse S. E. Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998 May 8;273(19):11630–11637. doi: 10.1074/jbc.273.19.11630. [DOI] [PubMed] [Google Scholar]
  2. Brooksbank C. E., Hutchings A., Butcher G. W., Irvine R. F., Divecha N. Monoclonal antibodies to phosphatidylinositol 4-phosphate 5-kinase: distribution and intracellular localization of the C isoform. Biochem J. 1993 Apr 1;291(Pt 1):77–82. doi: 10.1042/bj2910077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Castellino A. M., Chao M. V. Differential association of phosphatidylinositol-5-phosphate 4-kinase with the EGF/ErbB family of receptors. Cell Signal. 1999 Mar;11(3):171–177. doi: 10.1016/s0898-6568(98)00056-4. [DOI] [PubMed] [Google Scholar]
  4. Castellino A. M., Parker G. J., Boronenkov I. V., Anderson R. A., Chao M. V. A novel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem. 1997 Feb 28;272(9):5861–5870. doi: 10.1074/jbc.272.9.5861. [DOI] [PubMed] [Google Scholar]
  5. Clarke J. H., Letcher A. J., D'santos C. S., Halstead J. R., Irvine R. F., Divecha N. Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochem J. 2001 Aug 1;357(Pt 3):905–910. doi: 10.1042/0264-6021:3570905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooke F. T., Dove S. K., McEwen R. K., Painter G., Holmes A. B., Hall M. N., Michell R. H., Parker P. J. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol. 1998 Nov 5;8(22):1219–1222. doi: 10.1016/s0960-9822(07)00513-1. [DOI] [PubMed] [Google Scholar]
  7. Divecha N., Roefs M., Halstead J. R., D'Andrea S., Fernandez-Borga M., Oomen L., Saqib K. M., Wakelam M. J., D'Santos C. Interaction of the type Ialpha PIPkinase with phospholipase D: a role for the local generation of phosphatidylinositol 4, 5-bisphosphate in the regulation of PLD2 activity. EMBO J. 2000 Oct 16;19(20):5440–5449. doi: 10.1093/emboj/19.20.5440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Halstead J. R., Roefs M., Ellson C. D., D'Andrea S., Chen C., D'Santos C. S., Divecha N. A novel pathway of cellular phosphatidylinositol(3,4,5)-trisphosphate synthesis is regulated by oxidative stress. Curr Biol. 2001 Mar 20;11(6):386–395. doi: 10.1016/s0960-9822(01)00121-x. [DOI] [PubMed] [Google Scholar]
  9. Hinchliffe K. A., Ciruela A., Irvine R. F. PIPkins1, their substrates and their products: new functions for old enzymes. Biochim Biophys Acta. 1998 Dec 8;1436(1-2):87–104. doi: 10.1016/s0005-2760(98)00140-4. [DOI] [PubMed] [Google Scholar]
  10. Hinchliffe K. A., Ciruela A., Morris J. A., Divecha N., Irvine R. F. The type II PIPkins (PtdIns5P 4-kinases): enzymes in search of a function? Biochem Soc Trans. 1999 Aug;27(4):657–661. doi: 10.1042/bst0270657. [DOI] [PubMed] [Google Scholar]
  11. Hinchliffe K. A., Irvine R. F., Divecha N. Aggregation-dependent, integrin-mediated increases in cytoskeletally associated PtdInsP2 (4,5) levels in human platelets are controlled by translocation of PtdIns 4-P 5-kinase C to the cytoskeleton. EMBO J. 1996 Dec 2;15(23):6516–6524. [PMC free article] [PubMed] [Google Scholar]
  12. Huang Z., Guo X. X., Chen S. X., Alvarez K. M., Bell M. W., Anderson R. E. Regulation of type II phosphatidylinositol phosphate kinase by tyrosine phosphorylation in bovine rod outer segments. Biochemistry. 2001 Apr 17;40(15):4550–4559. doi: 10.1021/bi002575e. [DOI] [PubMed] [Google Scholar]
  13. Ishihara H., Shibasaki Y., Kizuki N., Katagiri H., Yazaki Y., Asano T., Oka Y. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem. 1996 Sep 27;271(39):23611–23614. doi: 10.1074/jbc.271.39.23611. [DOI] [PubMed] [Google Scholar]
  14. Ishihara H., Shibasaki Y., Kizuki N., Wada T., Yazaki Y., Asano T., Oka Y. Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem. 1998 Apr 10;273(15):8741–8748. doi: 10.1074/jbc.273.15.8741. [DOI] [PubMed] [Google Scholar]
  15. Morris J. B., Hinchliffe K. A., Ciruela A., Letcher A. J., Irvine R. F. Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS Lett. 2000 Jun 9;475(1):57–60. doi: 10.1016/s0014-5793(00)01625-2. [DOI] [PubMed] [Google Scholar]
  16. Nishikawa K., Toker A., Wong K., Marignani P. A., Johannes F. J., Cantley L. C. Association of protein kinase Cmu with type II phosphatidylinositol 4-kinase and type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem. 1998 Sep 4;273(36):23126–23133. doi: 10.1074/jbc.273.36.23126. [DOI] [PubMed] [Google Scholar]
  17. Rameh L. E., Tolias K. F., Duckworth B. C., Cantley L. C. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature. 1997 Nov 13;390(6656):192–196. doi: 10.1038/36621. [DOI] [PubMed] [Google Scholar]
  18. Rao V. D., Misra S., Boronenkov I. V., Anderson R. A., Hurley J. H. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell. 1998 Sep 18;94(6):829–839. doi: 10.1016/s0092-8674(00)81741-9. [DOI] [PubMed] [Google Scholar]
  19. Shibasaki Y., Ishihara H., Kizuki N., Asano T., Oka Y., Yazaki Y. Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J Biol Chem. 1997 Mar 21;272(12):7578–7581. doi: 10.1074/jbc.272.12.7578. [DOI] [PubMed] [Google Scholar]
  20. Stokoe D., Stephens L. R., Copeland T., Gaffney P. R., Reese C. B., Painter G. F., Holmes A. B., McCormick F., Hawkins P. T. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science. 1997 Jul 25;277(5325):567–570. doi: 10.1126/science.277.5325.567. [DOI] [PubMed] [Google Scholar]
  21. Tolias K. F., Couvillon A. D., Cantley L. C., Carpenter C. L. Characterization of a Rac1- and RhoGDI-associated lipid kinase signaling complex. Mol Cell Biol. 1998 Feb;18(2):762–770. doi: 10.1128/mcb.18.2.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tolias K. F., Hartwig J. H., Ishihara H., Shibasaki Y., Cantley L. C., Carpenter C. L. Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol. 2000 Feb 10;10(3):153–156. doi: 10.1016/s0960-9822(00)00315-8. [DOI] [PubMed] [Google Scholar]
  23. Tolias K. F., Rameh L. E., Ishihara H., Shibasaki Y., Chen J., Prestwich G. D., Cantley L. C., Carpenter C. L. Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J Biol Chem. 1998 Jul 17;273(29):18040–18046. doi: 10.1074/jbc.273.29.18040. [DOI] [PubMed] [Google Scholar]
  24. Van der Kaay J., Beck M., Gray A., Downes C. P. Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J Biol Chem. 1999 Dec 10;274(50):35963–35968. doi: 10.1074/jbc.274.50.35963. [DOI] [PubMed] [Google Scholar]
  25. Vanhaesebroeck B., Leevers S. J., Panayotou G., Waterfield M. D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997 Jul;22(7):267–272. doi: 10.1016/s0968-0004(97)01061-x. [DOI] [PubMed] [Google Scholar]
  26. Zhang X., Loijens J. C., Boronenkov I. V., Parker G. J., Norris F. A., Chen J., Thum O., Prestwich G. D., Majerus P. W., Anderson R. A. Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J Biol Chem. 1997 Jul 11;272(28):17756–17761. doi: 10.1074/jbc.272.28.17756. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES