Abstract
The neuronal calcium sensors are a family of EF-hand-containing Ca(2+)-binding proteins expressed predominantly in retinal photoreceptors and neurons. One of the family members is neurocalcin delta, the function of which is unknown. As an approach to elucidating the protein interactions made by neurocalcin delta, we have identified brain cytosolic proteins that bind to neurocalcin delta in a Ca(2+)-dependent manner. We used immobilized recombinant myristoylated neurocalcin delta combined with protein identification using MS. We demonstrate a specific interaction with clathrin heavy chain, alpha- and beta-tubulin, and actin. These interactions were dependent upon myristoylation of neurocalcin delta indicating that the N-terminal myristoyl group may be important for protein-protein interactions in addition to membrane association. Direct binding of neurocalcin delta to clathrin, tubulin and actin was confirmed using an overlay assay. These interactions were also demonstrated for endogenous neurocalcin delta by co-immunoprecipitation from rat brain cytosol. When expressed in HeLa cells, neurocalcin delta was cytosolic at resting Ca(2+) levels but translocated to membranes, including a perinuclear compartment (trans-Golgi network) where it co-localized with clathrin, following Ca(2+) elevation. These data suggest the possibility that neurocalcin delta functions in the control of clathrin-coated vesicle traffic.
Full Text
The Full Text of this article is available as a PDF (364.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames J. B., Ishima R., Tanaka T., Gordon J. I., Stryer L., Ikura M. Molecular mechanics of calcium-myristoyl switches. Nature. 1997 Sep 11;389(6647):198–202. doi: 10.1038/38310. [DOI] [PubMed] [Google Scholar]
- An W. F., Bowlby M. R., Betty M., Cao J., Ling H. P., Mendoza G., Hinson J. W., Mattsson K. I., Strassle B. W., Trimmer J. S. Modulation of A-type potassium channels by a family of calcium sensors. Nature. 2000 Feb 3;403(6769):553–556. doi: 10.1038/35000592. [DOI] [PubMed] [Google Scholar]
- Berridge M. J. Neuronal calcium signaling. Neuron. 1998 Jul;21(1):13–26. doi: 10.1016/s0896-6273(00)80510-3. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D., Morgan A. Ca2+ and secretory-vesicle dynamics. Trends Neurosci. 1995 Apr;18(4):191–196. doi: 10.1016/0166-2236(95)93900-i. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D., Weiss J. L. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J. 2001 Jan 1;353(Pt 1):1–12. [PMC free article] [PubMed] [Google Scholar]
- Chen C. K., Inglese J., Lefkowitz R. J., Hurley J. B. Ca(2+)-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem. 1995 Jul 28;270(30):18060–18066. doi: 10.1074/jbc.270.30.18060. [DOI] [PubMed] [Google Scholar]
- De Castro E., Nef S., Fiumelli H., Lenz S. E., Kawamura S., Nef P. Regulation of rhodopsin phosphorylation by a family of neuronal calcium sensors. Biochem Biophys Res Commun. 1995 Nov 2;216(1):133–140. doi: 10.1006/bbrc.1995.2601. [DOI] [PubMed] [Google Scholar]
- Dizhoor A. M., Olshevskaya E. V., Henzel W. J., Wong S. C., Stults J. T., Ankoudinova I., Hurley J. B. Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem. 1995 Oct 20;270(42):25200–25206. doi: 10.1074/jbc.270.42.25200. [DOI] [PubMed] [Google Scholar]
- Dizhoor A. M., Ray S., Kumar S., Niemi G., Spencer M., Brolley D., Walsh K. A., Philipov P. P., Hurley J. B., Stryer L. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science. 1991 Feb 22;251(4996):915–918. doi: 10.1126/science.1672047. [DOI] [PubMed] [Google Scholar]
- Duronio R. J., Jackson-Machelski E., Heuckeroth R. O., Olins P. O., Devine C. S., Yonemoto W., Slice L. W., Taylor S. S., Gordon J. I. Protein N-myristoylation in Escherichia coli: reconstitution of a eukaryotic protein modification in bacteria. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1506–1510. doi: 10.1073/pnas.87.4.1506. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engqvist-Goldstein A. E., Warren R. A., Kessels M. M., Keen J. H., Heuser J., Drubin D. G. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J Cell Biol. 2001 Sep 17;154(6):1209–1223. doi: 10.1083/jcb.200106089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenn D. E., Thomas G. M., O'Sullivan A. J., Burgoyne R. D. Examination of the role of ADP-ribosylation factor and phospholipase D activation in regulated exocytosis in chromaffin and PC12 cells. J Neurochem. 1998 Nov;71(5):2023–2033. doi: 10.1046/j.1471-4159.1998.71052023.x. [DOI] [PubMed] [Google Scholar]
- Gomez M., De Castro E., Guarin E., Sasakura H., Kuhara A., Mori I., Bartfai T., Bargmann C. I., Nef P. Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans. Neuron. 2001 Apr;30(1):241–248. doi: 10.1016/s0896-6273(01)00276-8. [DOI] [PubMed] [Google Scholar]
- Hamashima H., Tamaru T., Noguchi H., Kobayashi M., Takamatsu K. Immunochemical assessment of neural visinin-like calcium-binding protein 3 expression in rat brain. Neurosci Res. 2001 Jan;39(1):133–143. doi: 10.1016/s0168-0102(00)00208-x. [DOI] [PubMed] [Google Scholar]
- Hendricks K. B., Wang B. Q., Schnieders E. A., Thorner J. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol. 1999 Aug;1(4):234–241. doi: 10.1038/12058. [DOI] [PubMed] [Google Scholar]
- Jeng R. L., Welch M. D. Cytoskeleton: actin and endocytosis--no longer the weakest link. Curr Biol. 2001 Sep 4;11(17):R691–R694. doi: 10.1016/s0960-9822(01)00410-9. [DOI] [PubMed] [Google Scholar]
- Kato M., Watanabe Y., Iino S., Takaoka Y., Kobayashi S., Haga T., Hidaka H. Cloning and expression of a cDNA encoding a new neurocalcin isoform (neurocalcin alpha) from bovine brain. Biochem J. 1998 May 1;331(Pt 3):871–876. doi: 10.1042/bj3310871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knull H. R., Walsh J. L. Association of glycolytic enzymes with the cytoskeleton. Curr Top Cell Regul. 1992;33:15–30. doi: 10.1016/b978-0-12-152833-1.50007-1. [DOI] [PubMed] [Google Scholar]
- Kobayashi M., Takamatsu K., Saitoh S., Miura M., Noguchi T. Molecular cloning of hippocalcin, a novel calcium-binding protein of the recoverin family exclusively expressed in hippocampus. Biochem Biophys Res Commun. 1992 Nov 30;189(1):511–517. doi: 10.1016/0006-291x(92)91587-g. [DOI] [PubMed] [Google Scholar]
- Kobayashi M., Takamatsu K., Saitoh S., Noguchi T. Myristoylation of hippocalcin is linked to its calcium-dependent membrane association properties. J Biol Chem. 1993 Sep 5;268(25):18898–18904. [PubMed] [Google Scholar]
- Ladant D. Calcium and membrane binding properties of bovine neurocalcin delta expressed in Escherichia coli. J Biol Chem. 1995 Feb 17;270(7):3179–3185. [PubMed] [Google Scholar]
- Lenz S. E., Braunewell K. H., Weise C., Nedlina-Chittka A., Gundelfinger E. D. The neuronal EF-hand Ca(2+)-binding protein VILIP: interaction with cell membrane and actin-based cytoskeleton. Biochem Biophys Res Commun. 1996 Aug 23;225(3):1078–1083. doi: 10.1006/bbrc.1996.1298. [DOI] [PubMed] [Google Scholar]
- Levitan I. B. It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron. 1999 Apr;22(4):645–648. doi: 10.1016/s0896-6273(00)80722-9. [DOI] [PubMed] [Google Scholar]
- Maeda H., Ellis-Davies G. C., Ito K., Miyashita Y., Kasai H. Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron. 1999 Dec;24(4):989–1002. doi: 10.1016/s0896-6273(00)81045-4. [DOI] [PubMed] [Google Scholar]
- McFerran B. W., Graham M. E., Burgoyne R. D. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem. 1998 Aug 28;273(35):22768–22772. doi: 10.1074/jbc.273.35.22768. [DOI] [PubMed] [Google Scholar]
- McFerran B. W., Weiss J. L., Burgoyne R. D. Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction. J Biol Chem. 1999 Oct 15;274(42):30258–30265. doi: 10.1074/jbc.274.42.30258. [DOI] [PubMed] [Google Scholar]
- Moncrief N. D., Kretsinger R. H., Goodman M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol. 1990 Jun;30(6):522–562. doi: 10.1007/BF02101108. [DOI] [PubMed] [Google Scholar]
- Mornet D., Bonet-Kerrache A. Neurocalcin-actin interaction. Biochim Biophys Acta. 2001 Oct 18;1549(2):197–203. doi: 10.1016/s0167-4838(01)00260-6. [DOI] [PubMed] [Google Scholar]
- Okazaki K., Obata N. H., Inoue S., Hidaka H. S100 beta is a target protein of neurocalcin delta, an abundant isoform in glial cells. Biochem J. 1995 Mar 1;306(Pt 2):551–555. doi: 10.1042/bj3060551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okazaki K., Watanabe M., Ando Y., Hagiwara M., Terasawa M., Hidaka H. Full sequence of neurocalcin, a novel calcium-binding protein abundant in central nervous system. Biochem Biophys Res Commun. 1992 May 29;185(1):147–153. doi: 10.1016/s0006-291x(05)80968-4. [DOI] [PubMed] [Google Scholar]
- Pandey A., Mann M. Proteomics to study genes and genomes. Nature. 2000 Jun 15;405(6788):837–846. doi: 10.1038/35015709. [DOI] [PubMed] [Google Scholar]
- Paterlini M., Revilla V., Grant A. L., Wisden W. Expression of the neuronal calcium sensor protein family in the rat brain. Neuroscience. 2000;99(2):205–216. doi: 10.1016/s0306-4522(00)00201-3. [DOI] [PubMed] [Google Scholar]
- Pongs O., Lindemeier J., Zhu X. R., Theil T., Engelkamp D., Krah-Jentgens I., Lambrecht H. G., Koch K. W., Schwemer J., Rivosecchi R. Frequenin--a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron. 1993 Jul;11(1):15–28. doi: 10.1016/0896-6273(93)90267-u. [DOI] [PubMed] [Google Scholar]
- Saitoh S., Takamatsu K., Kobayashi M., Noguchi T. Expression of hippocalcin in the developing rat brain. Brain Res Dev Brain Res. 1994 Jul 15;80(1-2):199–208. doi: 10.1016/0165-3806(94)90105-8. [DOI] [PubMed] [Google Scholar]
- Spilker C., Richter K., Smalla K. H., Manahan-Vaughan D., Gundelfinger E. D., Braunewell K. H. The neuronal EF-hand calcium-binding protein visinin-like protein-3 is expressed in cerebellar Purkinje cells and shows a calcium-dependent membrane association. Neuroscience. 2000;96(1):121–129. doi: 10.1016/s0306-4522(99)00536-9. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Ames J. B., Harvey T. S., Stryer L., Ikura M. Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature. 1995 Aug 3;376(6539):444–447. doi: 10.1038/376444a0. [DOI] [PubMed] [Google Scholar]
- Timm S., Titus B., Bernd K., Barroso M. The EF-hand Ca(2+)-binding protein p22 associates with microtubules in an N-myristoylation-dependent manner. Mol Biol Cell. 1999 Oct;10(10):3473–3488. doi: 10.1091/mbc.10.10.3473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vijay-Kumar S., Kumar V. D. Crystal structure of recombinant bovine neurocalcin. Nat Struct Biol. 1999 Jan;6(1):80–88. doi: 10.1038/4956. [DOI] [PubMed] [Google Scholar]
- Weiss J. L., Archer D. A., Burgoyne R. D. Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem. 2000 Dec 22;275(51):40082–40087. doi: 10.1074/jbc.M008603200. [DOI] [PubMed] [Google Scholar]
- Weiss J. L., Burgoyne R. D. Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J Biol Chem. 2001 Oct 2;276(48):44804–44811. doi: 10.1074/jbc.M103262200. [DOI] [PubMed] [Google Scholar]
- Zozulya S., Ladant D., Stryer L. Expression and characterization of calcium-myristoyl switch proteins. Methods Enzymol. 1995;250:383–393. doi: 10.1016/0076-6879(95)50086-3. [DOI] [PubMed] [Google Scholar]
- Zozulya S., Stryer L. Calcium-myristoyl protein switch. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11569–11573. doi: 10.1073/pnas.89.23.11569. [DOI] [PMC free article] [PubMed] [Google Scholar]