Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):609–617. doi: 10.1042/0264-6021:3630609

Chicken avidin-related proteins show altered biotin-binding and physico-chemical properties as compared with avidin.

Olli H Laitinen 1, Vesa P Hytönen 1, Mervi K Ahlroth 1, Olli T Pentikäinen 1, Ciara Gallagher 1, Henri R Nordlund 1, Vladimir Ovod 1, Ari T Marttila 1, Eevaleena Porkka 1, Sanna Heino 1, Mark S Johnson 1, Kari J Airenne 1, Markku S Kulomaa 1
PMCID: PMC1222514  PMID: 11964162

Abstract

Chicken avidin and bacterial streptavidin are proteins familiar from their use in various (strept)avidin-biotin technological applications. Avidin binds the vitamin biotin with the highest affinity known for non-covalent interactions found in nature. The gene encoding avidin (AVD) has homologues in chicken, named avidin-related genes (AVRs). In the present study we used the AVR genes to produce recombinant AVR proteins (AVRs 1, 2, 3, 4/5, 6 and 7) in insect cell cultures and characterized their biotin-binding affinity and biochemical properties. Amino acid sequence analysis and molecular modelling were also used to predict and explain the properties of the AVRs. We found that the AVR proteins are very similar to avidin, both structurally and functionally. Despite the numerous amino acid substitutions in the subunit interface regions, the AVRs form extremely stable tetramers similar to those of avidin. Differences were found in some physico-chemical properties of the AVRs as compared with avidin, including lowered pI, increased glycosylation and, most notably, reversible biotin binding for two AVRs (AVR1 and AVR2). Molecular modelling showed how the replacement Lys(111)-->isoleucine in AVR2 alters the shape of the biotin-binding pocket and thus results in reversible binding. Both modelling and biochemical analyses showed that disulphide bonds can form and link monomers in AVR4/5, a property not found in avidin. These, together with the other properties of the AVRs described in the present paper, may offer advantages over avidin and streptavidin, making the AVRs applicable for improved avidin-biotin technological applications.

Full Text

The Full Text of this article is available as a PDF (346.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlroth M. K., Ahlroth P., Kulomaa M. S. Copy-number fluctuation by unequal crossing-over in the chicken avidin gene family. Biochem Biophys Res Commun. 2001 Oct 26;288(2):400–406. doi: 10.1006/bbrc.2001.5760. [DOI] [PubMed] [Google Scholar]
  2. Ahlroth M. K., Grapputo A., Laitinen O. H., Kulomaa M. S. Sequence features and evolutionary mechanisms in the chicken avidin gene family. Biochem Biophys Res Commun. 2001 Jul 20;285(3):734–741. doi: 10.1006/bbrc.2001.5163. [DOI] [PubMed] [Google Scholar]
  3. Ahlroth M. K., Kola E. H., Ewald D., Masabanda J., Sazanov A., Fries R., Kulomaa M. S. Characterization and chromosomal localization of the chicken avidin gene family. Anim Genet. 2000 Dec;31(6):367–375. doi: 10.1046/j.1365-2052.2000.00681.x. [DOI] [PubMed] [Google Scholar]
  4. Airenne K. J., Oker-Blom C., Marjomäki V. S., Bayer E. A., Wilchek M., Kulomaa M. S. Production of biologically active recombinant avidin in baculovirus-infected insect cells. Protein Expr Purif. 1997 Feb;9(1):100–108. doi: 10.1006/prep.1996.0660. [DOI] [PubMed] [Google Scholar]
  5. Bayer E. A., Ehrlich-Rogozinski S., Wilchek M. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic method for assessing the quaternary state and comparative thermostability of avidin and streptavidin. Electrophoresis. 1996 Aug;17(8):1319–1324. doi: 10.1002/elps.1150170808. [DOI] [PubMed] [Google Scholar]
  6. Bayer E. A., Wilchek M. Application of avidin-biotin technology to affinity-based separations. J Chromatogr. 1990 Jun 27;510:3–11. doi: 10.1016/s0021-9673(01)93733-1. [DOI] [PubMed] [Google Scholar]
  7. Bisgrove B. W., Andrews M. E., Raff R. A. Evolution of the fibropellin gene family and patterns of fibropellin gene expression in sea urchin phylogeny. J Mol Evol. 1995 Jul;41(1):34–45. doi: 10.1007/BF00174039. [DOI] [PubMed] [Google Scholar]
  8. Bisgrove B. W., Raff R. A. The SpEGF III gene encodes a member of the fibropellins: EGF repeat-containing proteins that form the apical lamina of the sea urchin embryo. Dev Biol. 1993 Jun;157(2):526–538. doi: 10.1006/dbio.1993.1155. [DOI] [PubMed] [Google Scholar]
  9. Bogan A. A., Thorn K. S. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998 Jul 3;280(1):1–9. doi: 10.1006/jmbi.1998.1843. [DOI] [PubMed] [Google Scholar]
  10. Chinol M., Casalini P., Maggiolo M., Canevari S., Omodeo E. S., Caliceti P., Veronese F. M., Cremonesi M., Chiolerio F., Nardone E. Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br J Cancer. 1998 Jul;78(2):189–197. doi: 10.1038/bjc.1998.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeLange R. J., Huang T. S. Egg white avidin. 3. Sequence of the 78-residue middle cyanogen bromide peptide. Complete amino acid sequence of the protein subunit. J Biol Chem. 1971 Feb 10;246(3):698–709. [PubMed] [Google Scholar]
  12. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol. 1972 Jul;109(1):129–135. [PubMed] [Google Scholar]
  13. González M., Argaraña C. E., Fidelio G. D. Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomol Eng. 1999 Dec 31;16(1-4):67–72. doi: 10.1016/s1050-3862(99)00041-8. [DOI] [PubMed] [Google Scholar]
  14. Gope M. L., Keinänen R. A., Kristo P. A., Conneely O. M., Beattie W. G., Zarucki-Schulz T., O'Malley B. W., Kulomaa M. S. Molecular cloning of the chicken avidin cDNA. Nucleic Acids Res. 1987 Apr 24;15(8):3595–3606. doi: 10.1093/nar/15.8.3595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green N. M. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67. doi: 10.1016/0076-6879(90)84259-j. [DOI] [PubMed] [Google Scholar]
  16. Green N. M. Avidin. Adv Protein Chem. 1975;29:85–133. doi: 10.1016/s0065-3233(08)60411-8. [DOI] [PubMed] [Google Scholar]
  17. Hendrickson W. A., Pähler A., Smith J. L., Satow Y., Merritt E. A., Phizackerley R. P. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2190–2194. doi: 10.1073/pnas.86.7.2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Janin J. Wet and dry interfaces: the role of solvent in protein-protein and protein-DNA recognition. Structure. 1999 Dec 15;7(12):R277–R279. doi: 10.1016/s0969-2126(00)88333-1. [DOI] [PubMed] [Google Scholar]
  19. Johnson M. S., May A. C., Rodionov M. A., Overington J. P. Discrimination of common protein folds: application of protein structure to sequence/structure comparisons. Methods Enzymol. 1996;266:575–598. doi: 10.1016/s0076-6879(96)66036-4. [DOI] [PubMed] [Google Scholar]
  20. Johnson M. S., Overington J. P. A structural basis for sequence comparisons. An evaluation of scoring methodologies. J Mol Biol. 1993 Oct 20;233(4):716–738. doi: 10.1006/jmbi.1993.1548. [DOI] [PubMed] [Google Scholar]
  21. Keinänen R. A., Laukkanen M. L., Kulomaa M. S. Molecular cloning of three structurally related genes for chicken avidin. J Steroid Biochem. 1988;30(1-6):17–21. doi: 10.1016/0022-4731(88)90071-4. [DOI] [PubMed] [Google Scholar]
  22. Keinänen R. A., Wallén M. J., Kristo P. A., Laukkanen M. O., Toimela T. A., Helenius M. A., Kulomaa M. S. Molecular cloning and nucleotide sequence of chicken avidin-related genes 1-5. Eur J Biochem. 1994 Mar 1;220(2):615–621. doi: 10.1111/j.1432-1033.1994.tb18663.x. [DOI] [PubMed] [Google Scholar]
  23. Kunnas T. A., Wallén M. J., Kulomaa M. S. Induction of chicken avidin and related mRNAs after bacterial infection. Biochim Biophys Acta. 1993 Dec 14;1216(3):441–445. doi: 10.1016/0167-4781(93)90012-3. [DOI] [PubMed] [Google Scholar]
  24. Laitinen O. H., Airenne K. J., Marttila A. T., Kulik T., Porkka E., Bayer E. A., Wilchek M., Kulomaa M. S. Mutation of a critical tryptophan to lysine in avidin or streptavidin may explain why sea urchin fibropellin adopts an avidin-like domain. FEBS Lett. 1999 Nov 12;461(1-2):52–58. doi: 10.1016/s0014-5793(99)01423-4. [DOI] [PubMed] [Google Scholar]
  25. Laitinen O. H., Marttila A. T., Airenne K. J., Kulik T., Livnah O., Bayer E. A., Wilchek M., Kulomaa M. S. Biotin induces tetramerization of a recombinant monomeric avidin. A model for protein-protein interactions. J Biol Chem. 2000 Nov 13;276(11):8219–8224. doi: 10.1074/jbc.M007930200. [DOI] [PubMed] [Google Scholar]
  26. Livnah O., Bayer E. A., Wilchek M., Sussman J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5076–5080. doi: 10.1073/pnas.90.11.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marttila A. T., Airenne K. J., Laitinen O. H., Kulik T., Bayer E. A., Wilchek M., Kulomaa M. S. Engineering of chicken avidin: a progressive series of reduced charge mutants. FEBS Lett. 1998 Dec 18;441(2):313–317. doi: 10.1016/s0014-5793(98)01570-1. [DOI] [PubMed] [Google Scholar]
  28. Marttila A. T., Laitinen O. H., Airenne K. J., Kulik T., Bayer E. A., Wilchek M., Kulomaa M. S. Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett. 2000 Feb 4;467(1):31–36. doi: 10.1016/s0014-5793(00)01119-4. [DOI] [PubMed] [Google Scholar]
  29. Pugliese L., Coda A., Malcovati M., Bolognesi M. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. J Mol Biol. 1993 Jun 5;231(3):698–710. doi: 10.1006/jmbi.1993.1321. [DOI] [PubMed] [Google Scholar]
  30. Sano T., Vajda S., Smith C. L., Cantor C. R. Engineering subunit association of multisubunit proteins: a dimeric streptavidin. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6153–6158. doi: 10.1073/pnas.94.12.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang C., Eufemi M., Turano C., Giartosio A. Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry. 1996 Jun 11;35(23):7299–7307. doi: 10.1021/bi9517704. [DOI] [PubMed] [Google Scholar]
  32. Weber P. C., Ohlendorf D. H., Wendoloski J. J., Salemme F. R. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989 Jan 6;243(4887):85–88. doi: 10.1126/science.2911722. [DOI] [PubMed] [Google Scholar]
  33. Wilchek M., Bayer E. A. Foreword and introduction to the book (strept)avidin-biotin system. Biomol Eng. 1999 Dec 31;16(1-4):1–4. doi: 10.1016/s1050-3862(99)00032-7. [DOI] [PubMed] [Google Scholar]
  34. Zerega B., Camardella L., Cermelli S., Sala R., Cancedda R., Descalzi Cancedda F. Avidin expression during chick chondrocyte and myoblast development in vitro and in vivo: regulation of cell proliferation. J Cell Sci. 2001 Apr;114(Pt 8):1473–1482. doi: 10.1242/jcs.114.8.1473. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES