Abstract
Optimization of post-translational modifications was shown to affect the ability of recombinant human acetylcholinesterase (rHuAChE) produced in HEK-293 cells to be retained in the circulation for prolonged periods of time [Kronman, Velan, Marcus, Ordentlich, Reuveny and Shafferman (1995) Biochem. J. 311, 959-967; Chitlaru, Kronman, Zeevi, Kam, Harel, Ordentlich, Velan and Shafferman (1998) Biochem. J. 336, 647-658; Chitlaru, Kronman, Velan and Shafferman (2001) Biochem. J. 354, 613-625]. To evaluate the possible contribution of the number of appended N-glycans in determining the pharmacokinetic behaviour of AChE, a series of sixteen recombinant human AChE glycoforms, differing in their number of appended N-glycans (2, 3, 4 or 5 glycans), state of assembly (dimeric or tetrameric) and terminal glycan sialylation (partially or fully sialylated) were generated. Extensive structural analysis of N-glycans demonstrated that the various glycan types associated with all the different rHuAChE glycoforms are essentially similar both in structure and abundance, and that production of the various glycoforms in the sialyltransferase-overexpressing 293ST-2D6 cell line resulted in the generation of enzyme species that carry glycans sialylated to the same extent. Pharmacokinetic profiling of the rHuAChE glycoforms in their fully tetramerized and sialylated state clearly demonstrated that circulatory longevity correlated directly with the number of attached N-glycans (mean residence times for rHuAChE glycoforms harbouring 2, 3, and 4 glycans=200, 740, and 1055 min respectively). This study provides evidence that glycan loading, together with N-glycan terminal processing and enzyme subunit oligomerization, operate in a hierarchical and concerted manner in determining the pharmacokinetic characteristics of AChE.
Full Text
The Full Text of this article is available as a PDF (383.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anumula K. R., Dhume S. T. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid. Glycobiology. 1998 Jul;8(7):685–694. doi: 10.1093/glycob/8.7.685. [DOI] [PubMed] [Google Scholar]
- Bigge J. C., Patel T. P., Bruce J. A., Goulding P. N., Charles S. M., Parekh R. B. Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem. 1995 Sep 20;230(2):229–238. doi: 10.1006/abio.1995.1468. [DOI] [PubMed] [Google Scholar]
- Bon S., Coussen F., Massoulié J. Quaternary associations of acetylcholinesterase. II. The polyproline attachment domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3016–3021. doi: 10.1074/jbc.272.5.3016. [DOI] [PubMed] [Google Scholar]
- Bon S., Massoulié J. Quaternary associations of acetylcholinesterase. I. Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J Biol Chem. 1997 Jan 31;272(5):3007–3015. doi: 10.1074/jbc.272.5.3007. [DOI] [PubMed] [Google Scholar]
- Bourne Y., Grassi J., Bougis P. E., Marchot P. Conformational flexibility of the acetylcholinesterase tetramer suggested by x-ray crystallography. J Biol Chem. 1999 Oct 22;274(43):30370–30376. doi: 10.1074/jbc.274.43.30370. [DOI] [PubMed] [Google Scholar]
- Chitlaru T., Kronman C., Velan B., Shafferman A. Effect of human acetylcholinesterase subunit assembly on its circulatory residence. Biochem J. 2001 Mar 15;354(Pt 3):613–625. doi: 10.1042/0264-6021:3540613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chitlaru T., Kronman C., Zeevi M., Kam M., Harel A., Ordentlich A., Velan B., Shafferman A. Modulation of circulatory residence of recombinant acetylcholinesterase through biochemical or genetic manipulation of sialylation levels. Biochem J. 1998 Dec 15;336(Pt 3):647–658. doi: 10.1042/bj3360647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen O., Kronman C., Chitlaru T., Ordentlich A., Velan B., Shafferman A. Effect of chemical modification of recombinant human acetylcholinesterase by polyethylene glycol on its circulatory longevity. Biochem J. 2001 Aug 1;357(Pt 3):795–802. doi: 10.1042/0264-6021:3570795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cousin P., Déchaud H., Grenot C., Lejeune H., Pugeat M. Human variant sex hormone-binding globulin (SHBG) with an additional carbohydrate chain has a reduced clearance rate in rabbit. J Clin Endocrinol Metab. 1998 Jan;83(1):235–240. doi: 10.1210/jcem.83.1.4515. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Fischer M., Ittah A., Liefer I., Gorecki M. Expression and reconstitution of biologically active human acetylcholinesterase from Escherichia coli. Cell Mol Neurobiol. 1993 Feb;13(1):25–38. doi: 10.1007/BF00712987. [DOI] [PubMed] [Google Scholar]
- Fukuda M. N., Sasaki H., Lopez L., Fukuda M. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood. 1989 Jan;73(1):84–89. [PubMed] [Google Scholar]
- Gabrielsson JL, Weiner DL. Methodology for pharmacokinetic/pharmacodynamic data analysis. Pharm Sci Technolo Today. 1999 Jun;2(6):244–252. doi: 10.1016/s1461-5347(99)00162-5. [DOI] [PubMed] [Google Scholar]
- Goochee C. F., Gramer M. J., Andersen D. C., Bahr J. B., Rasmussen J. R. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnology (N Y) 1991 Dec;9(12):1347–1355. doi: 10.1038/nbt1291-1347. [DOI] [PubMed] [Google Scholar]
- Goochee C. F., Monica T. Environmental effects on protein glycosylation. Biotechnology (N Y) 1990 May;8(5):421–427. doi: 10.1038/nbt0590-421. [DOI] [PubMed] [Google Scholar]
- Hall Z. W. Multiple forms of acetylcholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle. J Neurobiol. 1973;4(4):343–361. doi: 10.1002/neu.480040404. [DOI] [PubMed] [Google Scholar]
- Kanwar Y. S. Biophysiology of glomerular filtration and proteinuria. Lab Invest. 1984 Jul;51(1):7–21. [PubMed] [Google Scholar]
- Kronman C., Chitlaru T., Elhanany E., Velan B., Shafferman A. Hierarchy of post-translational modifications involved in the circulatory longevity of glycoproteins. Demonstration of concerted contributions of glycan sialylation and subunit assembly to the pharmacokinetic behavior of bovine acetylcholinesterase. J Biol Chem. 2000 Sep 22;275(38):29488–29502. doi: 10.1074/jbc.M004298200. [DOI] [PubMed] [Google Scholar]
- Kronman C., Velan B., Gozes Y., Leitner M., Flashner Y., Lazar A., Marcus D., Sery T., Papier Y., Grosfeld H. Production and secretion of high levels of recombinant human acetylcholinesterase in cultured cell lines: microheterogeneity of the catalytic subunit. Gene. 1992 Nov 16;121(2):295–304. doi: 10.1016/0378-1119(92)90134-b. [DOI] [PubMed] [Google Scholar]
- Kronman C., Velan B., Marcus D., Ordentlich A., Reuveny S., Shafferman A. Involvement of oligomerization, N-glycosylation and sialylation in the clearance of cholinesterases from the circulation. Biochem J. 1995 Nov 1;311(Pt 3):959–967. doi: 10.1042/bj3110959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Küster B., Wheeler S. F., Hunter A. P., Dwek R. A., Harvey D. J. Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal Biochem. 1997 Jul 15;250(1):82–101. doi: 10.1006/abio.1997.2199. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Anselmet A., Bon S., Krejci E., Legay C., Morel N., Simon S. Acetylcholinesterase: C-terminal domains, molecular forms and functional localization. J Physiol Paris. 1998 Jun-Aug;92(3-4):183–190. doi: 10.1016/s0928-4257(98)80007-7. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Pezzementi L., Bon S., Krejci E., Vallette F. M. Molecular and cellular biology of cholinesterases. Prog Neurobiol. 1993 Jul;41(1):31–91. doi: 10.1016/0301-0082(93)90040-y. [DOI] [PubMed] [Google Scholar]
- Mechref Y., Novotny M. V. Mass spectrometric mapping and sequencing of N-linked oligosaccharides derived from submicrogram amounts of glycoproteins. Anal Chem. 1998 Feb 1;70(3):455–463. doi: 10.1021/ac970947s. [DOI] [PubMed] [Google Scholar]
- Mendelson I., Kronman C., Ariel N., Shafferman A., Velan B. Bovine acetylcholinesterase: cloning, expression and characterization. Biochem J. 1998 Aug 15;334(Pt 1):251–259. doi: 10.1042/bj3340251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morel N., Leroy J., Ayon A., Massoulié J., Bon S. Acetylcholinesterase H and T dimers are associated through the same contact. Mutations at this interface interfere with the C-terminal T peptide, inducing degradation rather than secretion. J Biol Chem. 2001 Jul 6;276(40):37379–37389. doi: 10.1074/jbc.M103192200. [DOI] [PubMed] [Google Scholar]
- Mutero A., Fournier D. Post-translational modifications of Drosophila acetylcholinesterase. In vitro mutagenesis and expression in Xenopus oocytes. J Biol Chem. 1992 Jan 25;267(3):1695–1700. [PubMed] [Google Scholar]
- Narita M., Bu G., Olins G. M., Higuchi D. A., Herz J., Broze G. J., Jr, Schwartz A. L. Two receptor systems are involved in the plasma clearance of tissue factor pathway inhibitor in vivo. J Biol Chem. 1995 Oct 20;270(42):24800–24804. doi: 10.1074/jbc.270.42.24800. [DOI] [PubMed] [Google Scholar]
- Okafo G., Burrow L., Carr S. A., Roberts G. D., Johnson W., Camilleri P. A coordinated high-performance liquid chromatographic, capillary electrophoretic, and mass spectrometric approach for the analysis of oligosaccharide mixtures derivatized with 2-aminoacridone. Anal Chem. 1996 Dec 15;68(24):4424–4430. doi: 10.1021/ac960721+. [DOI] [PubMed] [Google Scholar]
- Okafo G., Langridge J., North S., Organ A., West A., Morris M., Camilleri P. High-performance liquid chromatographic analysis of complex N-linked glycans derivatized with 2-aminoacridone. Anal Chem. 1997 Dec 15;69(24):4985–4993. doi: 10.1021/ac9707139. [DOI] [PubMed] [Google Scholar]
- Opdenakker G., Rudd P. M., Ponting C. P., Dwek R. A. Concepts and principles of glycobiology. FASEB J. 1993 Nov;7(14):1330–1337. doi: 10.1096/fasebj.7.14.8224606. [DOI] [PubMed] [Google Scholar]
- Prody C. A., Zevin-Sonkin D., Gnatt A., Goldberg O., Soreq H. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3555–3559. doi: 10.1073/pnas.84.11.3555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rademacher T. W., Parekh R. B., Dwek R. A. Glycobiology. Annu Rev Biochem. 1988;57:785–838. doi: 10.1146/annurev.bi.57.070188.004033. [DOI] [PubMed] [Google Scholar]
- Ralston J. S., Rush R. S., Doctor B. P., Wolfe A. D. Acetylcholinesterase from fetal bovine serum. Purification and characterization of soluble G4 enzyme. J Biol Chem. 1985 Apr 10;260(7):4312–4318. [PubMed] [Google Scholar]
- Raveh L., Grunwald J., Marcus D., Papier Y., Cohen E., Ashani Y. Human butyrylcholinesterase as a general prophylactic antidote for nerve agent toxicity. In vitro and in vivo quantitative characterization. Biochem Pharmacol. 1993 Jun 22;45(12):2465–2474. doi: 10.1016/0006-2952(93)90228-o. [DOI] [PubMed] [Google Scholar]
- Rosenberry T. L., Richardson J. M. Structure of 18S and 14S acetylcholinesterase. Identification of collagen-like subunits that are linked by disulfide bonds to catalytic subunits. Biochemistry. 1977 Aug 9;16(16):3550–3558. doi: 10.1021/bi00635a008. [DOI] [PubMed] [Google Scholar]
- Rotundo R. L., Rossi S. G., Anglister L. Transplantation of quail collagen-tailed acetylcholinesterase molecules onto the frog neuromuscular synapse. J Cell Biol. 1997 Jan 27;136(2):367–374. doi: 10.1083/jcb.136.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudd P. M., Morgan B. P., Wormald M. R., Harvey D. J., van den Berg C. W., Davis S. J., Ferguson M. A., Dwek R. A. The glycosylation of the complement regulatory protein, human erythrocyte CD59. J Biol Chem. 1997 Mar 14;272(11):7229–7244. doi: 10.1074/jbc.272.11.7229. [DOI] [PubMed] [Google Scholar]
- Sareneva T., Cantell K., Pyhälä L., Pirhonen J., Julkunen I. Effect of carbohydrates on the pharmacokinetics of human interferon-gamma. J Interferon Res. 1993 Aug;13(4):267–269. doi: 10.1089/jir.1993.13.267. [DOI] [PubMed] [Google Scholar]
- Saxena A., Raveh L., Ashani Y., Doctor B. P. Structure of glycan moieties responsible for the extended circulatory life time of fetal bovine serum acetylcholinesterase and equine serum butyrylcholinesterase. Biochemistry. 1997 Jun 17;36(24):7481–7489. doi: 10.1021/bi963156d. [DOI] [PubMed] [Google Scholar]
- Shafferman A., Ordentlich A., Barak D., Kronman C., Ber R., Bino T., Ariel N., Osman R., Velan B. Electrostatic attraction by surface charge does not contribute to the catalytic efficiency of acetylcholinesterase. EMBO J. 1994 Aug 1;13(15):3448–3455. doi: 10.1002/j.1460-2075.1994.tb06650.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smedsrød B., Einarsson M. Clearance of tissue plasminogen activator by mannose and galactose receptors in the liver. Thromb Haemost. 1990 Feb 19;63(1):60–66. [PubMed] [Google Scholar]
- Smith P. L., Kaetzel D., Nilson J., Baenziger J. U. The sialylated oligosaccharides of recombinant bovine lutropin modulate hormone bioactivity. J Biol Chem. 1990 Jan 15;265(2):874–881. [PubMed] [Google Scholar]
- Smith P. L., Skelton T. P., Fiete D., Dharmesh S. M., Beranek M. C., MacPhail L., Broze G. J., Jr, Baenziger J. U. The asparagine-linked oligosaccharides on tissue factor pathway inhibitor terminate with SO4-4GalNAc beta 1, 4GlcNAc beta 1,2 Mana alpha. J Biol Chem. 1992 Sep 25;267(27):19140–19146. [PubMed] [Google Scholar]
- Szkudlinski M. W., Thotakura N. R., Tropea J. E., Grossmann M., Weintraub B. D. Asparagine-linked oligosaccharide structures determine clearance and organ distribution of pituitary and recombinant thyrotropin. Endocrinology. 1995 Aug;136(8):3325–3330. doi: 10.1210/endo.136.8.7628367. [DOI] [PubMed] [Google Scholar]
- Takeuchi M., Takasaki S., Shimada M., Kobata A. Role of sugar chains in the in vitro biological activity of human erythropoietin produced in recombinant Chinese hamster ovary cells. J Biol Chem. 1990 Jul 25;265(21):12127–12130. [PubMed] [Google Scholar]
- Thotakura N. R., Blithe D. L. Glycoprotein hormones: glycobiology of gonadotrophins, thyrotrophin and free alpha subunit. Glycobiology. 1995 Feb;5(1):3–10. doi: 10.1093/glycob/5.1.3. [DOI] [PubMed] [Google Scholar]
- Velan B., Kronman C., Ordentlich A., Flashner Y., Leitner M., Cohen S., Shafferman A. N-glycosylation of human acetylcholinesterase: effects on activity, stability and biosynthesis. Biochem J. 1993 Dec 15;296(Pt 3):649–656. doi: 10.1042/bj2960649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vigny M., Martin G. R., Grotendorst G. R. Interactions of asymmetric forms of acetylcholinesterase with basement membrane components. J Biol Chem. 1983 Jul 25;258(14):8794–8798. [PubMed] [Google Scholar]
- Welply J. K. Protein glycosylation: function and factors that regulate oligosaccharide structure. Biotechnology. 1991;17:59–72. doi: 10.1016/b978-0-409-90123-8.50009-4. [DOI] [PubMed] [Google Scholar]
- Wittwer A. J., Howard S. C. Glycosylation at Asn-184 inhibits the conversion of single-chain to two-chain tissue-type plasminogen activator by plasmin. Biochemistry. 1990 May 1;29(17):4175–4180. doi: 10.1021/bi00469a021. [DOI] [PubMed] [Google Scholar]
- Yan S. B., Chao Y. B., van Halbeek H. Novel Asn-linked oligosaccharides terminating in GalNAc beta (1-->4)[Fuc alpha (1-->3)]GlcNAc beta (1-->.) are present in recombinant human protein C expressed in human kidney 293 cells. Glycobiology. 1993 Dec;3(6):597–608. doi: 10.1093/glycob/3.6.597. [DOI] [PubMed] [Google Scholar]
- van der Kaaden M. E., Rijken D. C., Groeneveld E., van Berkel T. J., Kuiper J. Native and non-glycosylated recombinant single-chain urokinase-type plasminogen activator are recognized by different receptor systems on rat parenchymal liver cells. Thromb Haemost. 1995 Aug;74(2):722–729. [PubMed] [Google Scholar]