Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):657–666. doi: 10.1042/0264-6021:3630657

Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1.

Stephen A Watt 1, Gursant Kular 1, Ian N Fleming 1, C Peter Downes 1, John M Lucocq 1
PMCID: PMC1222518  PMID: 11964166

Abstract

Ptd(4,5)P(2) is thought to promote and organize a wide range of cellular functions, including vesicular membrane traffic and cytoskeletal dynamics, by recruiting functional protein complexes to restricted locations in cellular membranes. However, little is known about the distribution of PtdIns(4,5)P(2) in the cell at high resolution. We have used the pleckstrin homology (PH) domain of phospholipase delta(1) (PLCdelta(1)), narrowly specific for PtdIns(4,5)P(2), to map the distribution of the lipid in astrocytoma and A431 cells. We applied the glutathione S-transferase-tagged PLCdelta(1) PH domain (PLCdelta(1)PH-GST) in an on-section labelling approach which avoids transfection procedures. Here we demonstrate PtdIns(4,5)P(2) labelling in the plasma membrane, and also in intracellular membranes, including Golgi (mainly stack), endosomes and endoplasmic reticulum, as well as in electron-dense structures within the nucleus. At the plasma membrane, labelling was more concentrated over lamellipodia, but not in caveolae, which contained less than 10% of the total cell-surface labelling. A dramatic decrease in signal over labelled compartments was observed on preincubation with the cognate headgroup [Ins(1,4,5)P(3)], and plasma-membrane labelling was substantially decreased after stimulation with thrombin-receptor-activating peptide (SFLLRN in the one-letter amino acid code), a treatment which markedly diminishes PtdIns(4,5)P(2) levels. Thus we have developed a highly selective method for mapping the PtdIns(4,5)P(2) distribution within cells at high resolution, and our data provide direct evidence for this lipid at key functional locations.

Full Text

The Full Text of this article is available as a PDF (312.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajno L., Peng X. R., Schreiber A. D., Moore H. P., Trimble W. S., Grinstein S. Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J Cell Biol. 2000 May 1;149(3):697–706. doi: 10.1083/jcb.149.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balla A., Vereb G., Gülkan H., Gehrmann T., Gergely P., Heilmeyer L. M., Jr, Antal M. Immunohistochemical localisation of two phosphatidylinositol 4-kinase isoforms, PI4K230 and PI4K92, in the central nervous system of rats. Exp Brain Res. 2000 Oct;134(3):279–288. doi: 10.1007/s002210000469. [DOI] [PubMed] [Google Scholar]
  3. Batty I. H., Downes C. P. Thrombin receptors modulate insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation in 1321N1 astrocytoma cells. Biochem J. 1996 Jul 15;317(Pt 2):347–351. doi: 10.1042/bj3170347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  5. Botelho R. J., Teruel M., Dierckman R., Anderson R., Wells A., York J. D., Meyer T., Grinstein S. Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol. 2000 Dec 25;151(7):1353–1368. doi: 10.1083/jcb.151.7.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bothmer J., Markerink M., Jolles J. Evidence for a new inositol phospholipid in rat brain mitochondria. Biochem Biophys Res Commun. 1992 Sep 16;187(2):1077–1082. doi: 10.1016/0006-291x(92)91307-c. [DOI] [PubMed] [Google Scholar]
  7. Cheung P. C., Trinkle-Mulcahy L., Cohen P., Lucocq J. M. Characterization of a novel phosphatidylinositol 3-phosphate-binding protein containing two FYVE fingers in tandem that is targeted to the Golgi. Biochem J. 2001 Apr 1;355(Pt 1):113–121. doi: 10.1042/0264-6021:3550113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cremona O., De Camilli P. Phosphoinositides in membrane traffic at the synapse. J Cell Sci. 2001 Mar;114(Pt 6):1041–1052. doi: 10.1242/jcs.114.6.1041. [DOI] [PubMed] [Google Scholar]
  9. Cross D. A., Alessi D. R., Cohen P., Andjelkovich M., Hemmings B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21;378(6559):785–789. doi: 10.1038/378785a0. [DOI] [PubMed] [Google Scholar]
  10. De Camilli P., Emr S. D., McPherson P. S., Novick P. Phosphoinositides as regulators in membrane traffic. Science. 1996 Mar 15;271(5255):1533–1539. doi: 10.1126/science.271.5255.1533. [DOI] [PubMed] [Google Scholar]
  11. De Matteis M. A., Morrow J. S. Spectrin tethers and mesh in the biosynthetic pathway. J Cell Sci. 2000 Jul;113(Pt 13):2331–2343. doi: 10.1242/jcs.113.13.2331. [DOI] [PubMed] [Google Scholar]
  12. Dowler S., Currie R. A., Campbell D. G., Deak M., Kular G., Downes C. P., Alessi D. R. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J. 2000 Oct 1;351(Pt 1):19–31. doi: 10.1042/0264-6021:3510019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fleming I. N., Gray A., Downes C. P. Regulation of the Rac1-specific exchange factor Tiam1 involves both phosphoinositide 3-kinase-dependent and -independent components. Biochem J. 2000 Oct 1;351(Pt 1):173–182. doi: 10.1042/0264-6021:3510173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukami K., Endo T., Imamura M., Takenawa T. alpha-Actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J Biol Chem. 1994 Jan 14;269(2):1518–1522. [PubMed] [Google Scholar]
  15. Gillooly D. J., Simonsen A., Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J. 2001 Apr 15;355(Pt 2):249–258. doi: 10.1042/0264-6021:3550249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gillooly D. J., Stenmark H. Cell biology. A lipid oils the endocytosis machine. Science. 2001 Feb 9;291(5506):993–994. doi: 10.1126/science.291.5506.993. [DOI] [PubMed] [Google Scholar]
  17. Godi A., Pertile P., Meyers R., Marra P., Di Tullio G., Iurisci C., Luini A., Corda D., De Matteis M. A. ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol. 1999 Sep;1(5):280–287. doi: 10.1038/12993. [DOI] [PubMed] [Google Scholar]
  18. Helms J. B., de Vries K. J., Wirtz K. W. Synthesis of phosphatidylinositol 4,5-bisphosphate in the endoplasmic reticulum of Chinese hamster ovary cells. J Biol Chem. 1991 Nov 15;266(32):21368–21374. [PubMed] [Google Scholar]
  19. Honda A., Nogami M., Yokozeki T., Yamazaki M., Nakamura H., Watanabe H., Kawamoto K., Nakayama K., Morris A. J., Frohman M. A. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell. 1999 Nov 24;99(5):521–532. doi: 10.1016/s0092-8674(00)81540-8. [DOI] [PubMed] [Google Scholar]
  20. Itoh T., Ijuin T., Takenawa T. A novel phosphatidylinositol-5-phosphate 4-kinase (phosphatidylinositol-phosphate kinase IIgamma) is phosphorylated in the endoplasmic reticulum in response to mitogenic signals. J Biol Chem. 1998 Aug 7;273(32):20292–20299. doi: 10.1074/jbc.273.32.20292. [DOI] [PubMed] [Google Scholar]
  21. Janmey P. A. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol. 1994;56:169–191. doi: 10.1146/annurev.ph.56.030194.001125. [DOI] [PubMed] [Google Scholar]
  22. Jones D. H., Morris J. B., Morgan C. P., Kondo H., Irvine R. F., Cockcroft S. Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J Biol Chem. 2000 May 5;275(18):13962–13966. doi: 10.1074/jbc.c901019199. [DOI] [PubMed] [Google Scholar]
  23. Kohn A. D., Kovacina K. S., Roth R. A. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 1995 Sep 1;14(17):4288–4295. doi: 10.1002/j.1460-2075.1995.tb00103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lemmon M. A., Ferguson K. M., O'Brien R., Sigler P. B., Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10472–10476. doi: 10.1073/pnas.92.23.10472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lemmon M. A., Ferguson K. M., Schlessinger J. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell. 1996 May 31;85(5):621–624. doi: 10.1016/s0092-8674(00)81022-3. [DOI] [PubMed] [Google Scholar]
  26. Lemmon M. A., Ferguson K. M. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J. 2000 Aug 15;350(Pt 1):1–18. [PMC free article] [PubMed] [Google Scholar]
  27. Levine T. P., Munro S. The pleckstrin homology domain of oxysterol-binding protein recognises a determinant specific to Golgi membranes. Curr Biol. 1998 Jun 18;8(13):729–739. doi: 10.1016/s0960-9822(98)70296-9. [DOI] [PubMed] [Google Scholar]
  28. Liou W., Geuze H. J., Slot J. W. Improving structural integrity of cryosections for immunogold labeling. Histochem Cell Biol. 1996 Jul;106(1):41–58. doi: 10.1007/BF02473201. [DOI] [PubMed] [Google Scholar]
  29. Lucocq J. Quantitation of gold labelling and antigens in immunolabelled ultrathin sections. J Anat. 1994 Feb;184(Pt 1):1–13. [PMC free article] [PubMed] [Google Scholar]
  30. Lundberg G. A., Jergil B. Generation of phosphatidylinositol 4,5-bisphosphate proceeds through an intracellular route in rat hepatocytes. FEBS Lett. 1988 Nov 21;240(1-2):171–176. doi: 10.1016/0014-5793(88)80362-4. [DOI] [PubMed] [Google Scholar]
  31. Maraldi N. M., Zini N., Santi S., Manzoli F. A. Topology of inositol lipid signal transduction in the nucleus. J Cell Physiol. 1999 Nov;181(2):203–217. doi: 10.1002/(SICI)1097-4652(199911)181:2<203::AID-JCP3>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  32. Martin T. F. PI(4,5)P(2) regulation of surface membrane traffic. Curr Opin Cell Biol. 2001 Aug;13(4):493–499. doi: 10.1016/s0955-0674(00)00241-6. [DOI] [PubMed] [Google Scholar]
  33. Martin T. F. PI(4,5)P(2) regulation of surface membrane traffic. Curr Opin Cell Biol. 2001 Aug;13(4):493–499. doi: 10.1016/s0955-0674(00)00241-6. [DOI] [PubMed] [Google Scholar]
  34. Marx J. Caveolae: a once-elusive structure gets some respect. Science. 2001 Nov 30;294(5548):1862–1865. doi: 10.1126/science.294.5548.1862. [DOI] [PubMed] [Google Scholar]
  35. Mazzotti G., Zini N., Rizzi E., Rizzoli R., Galanzi A., Ognibene A., Santi S., Matteucci A., Martelli A. M., Maraldi N. M. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J Histochem Cytochem. 1995 Feb;43(2):181–191. doi: 10.1177/43.2.7822774. [DOI] [PubMed] [Google Scholar]
  36. Nash M. S., Young K. W., Willars G. B., Challiss R. A., Nahorski S. R. Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem J. 2001 May 15;356(Pt 1):137–142. doi: 10.1042/0264-6021:3560137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Osborne S. L., Thomas C. L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J Cell Sci. 2001 Jul;114(Pt 13):2501–2511. doi: 10.1242/jcs.114.13.2501. [DOI] [PubMed] [Google Scholar]
  38. Pike L. J., Casey L. Localization and turnover of phosphatidylinositol 4,5-bisphosphate in caveolin-enriched membrane domains. J Biol Chem. 1996 Oct 25;271(43):26453–26456. doi: 10.1074/jbc.271.43.26453. [DOI] [PubMed] [Google Scholar]
  39. Pike L. J., Miller J. M. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem. 1998 Aug 28;273(35):22298–22304. doi: 10.1074/jbc.273.35.22298. [DOI] [PubMed] [Google Scholar]
  40. Ponnambalam S., Rabouille C., Luzio J. P., Nilsson T., Warren G. The TGN38 glycoprotein contains two non-overlapping signals that mediate localization to the trans-Golgi network. J Cell Biol. 1994 Apr;125(2):253–268. doi: 10.1083/jcb.125.2.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Raucher D., Stauffer T., Chen W., Shen K., Guo S., York J. D., Sheetz M. P., Meyer T. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell. 2000 Jan 21;100(2):221–228. doi: 10.1016/s0092-8674(00)81560-3. [DOI] [PubMed] [Google Scholar]
  42. Schlegel A., Lisanti M. P. Caveolae and their coat proteins, the caveolins: from electron microscopic novelty to biological launching pad. J Cell Physiol. 2001 Mar;186(3):329–337. doi: 10.1002/1097-4652(2001)9999:9999<000::AID-JCP1045>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  43. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  44. Simonsen A., Stenmark H. PX domains: attracted by phosphoinositides. Nat Cell Biol. 2001 Aug;3(8):E179–E182. doi: 10.1038/35087112. [DOI] [PubMed] [Google Scholar]
  45. Simonsen A., Wurmser A. E., Emr S. D., Stenmark H. The role of phosphoinositides in membrane transport. Curr Opin Cell Biol. 2001 Aug;13(4):485–492. doi: 10.1016/s0955-0674(00)00240-4. [DOI] [PubMed] [Google Scholar]
  46. Stephens L. R., Hughes K. T., Irvine R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature. 1991 May 2;351(6321):33–39. doi: 10.1038/351033a0. [DOI] [PubMed] [Google Scholar]
  47. Tall E. G., Spector I., Pentyala S. N., Bitter I., Rebecchi M. J. Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. Curr Biol. 2000 Jun 15;10(12):743–746. doi: 10.1016/s0960-9822(00)00541-8. [DOI] [PubMed] [Google Scholar]
  48. Várnai P., Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol. 1998 Oct 19;143(2):501–510. doi: 10.1083/jcb.143.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wiradjaja F., Ooms L. M., Whisstock J. C., McColl B., Helfenbaum L., Sambrook J. F., Gething M. J., Mitchell C. A. The yeast inositol polyphosphate 5-phosphatase Inp54p localizes to the endoplasmic reticulum via a C-terminal hydrophobic anchoring tail: regulation of secretion from the endoplasmic reticulum. J Biol Chem. 2000 Dec 14;276(10):7643–7653. doi: 10.1074/jbc.M010471200. [DOI] [PubMed] [Google Scholar]
  50. Wong K., Meyers ddR, Cantley L. C. Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem. 1997 May 16;272(20):13236–13241. doi: 10.1074/jbc.272.20.13236. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES