Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):667–676. doi: 10.1042/0264-6021:3630667

Interaction of the 1alpha,25-dihydroxyvitamin D3 receptor at the distal promoter region of the bone-specific osteocalcin gene requires nucleosomal remodelling.

Roberto Paredes 1, José Gutiérrez 1, Soraya Gutierrez 1, Lizabeth Allison 1, Marcia Puchi 1, Maria Imschenetzky 1, Andre van Wijnen 1, Jane Lian 1, Gary Stein 1, Janet Stein 1, Martin Montecino 1
PMCID: PMC1222519  PMID: 11964167

Abstract

1alpha,25-Dihydroxyvitamin D3-mediated transcriptional control of the bone-specific osteocalcin (OC) gene requires the integration of regulatory signals at the vitamin D-responsive element (VDRE) and flanking tissue-specific sequences. The 1alpha,25-dihydroxyvitamin D3 receptor (VDR) is a member of the nuclear receptor superfamily and forms a heterodimeric complex with the receptor for 9-cis retinoic acid (RXR) that binds to the VDRE sequence. We have demonstrated previously that changes in chromatin structure at the VDRE region of the rat OC gene promoter accompany transcriptional enhancement in vivo, suggesting a requirement for chromatin remodelling. Here we show that the VDRE in the distal region of the OC gene promoter is refractory to binding of the VDR-RXR complex when organized in a nucleosomal context. Addition of the ligand 1alpha,25-dihydroxyvitamin D3 or the presence of other transcription factors, such as YY1 and Runx/Cbfa (core-binding factor alpha), which also bind to sequences partially overlapping or near the VDRE, is not sufficient to render the VDRE accessible. Thus the VDR-RXR, unlike other steroid receptors, such as glucocorticoid receptor, progesterone receptor and thyroid receptor, is unable to bind its target sequence within a nucleosomal context. Taken together these results demonstrate that nucleosomal remodelling is required for in vivo occupancy of binding sites in the distal region of the OC gene promoter by the regulatory factors responsible for 1alpha,25-dihydroxyvitamin D3-dependent enhancement of transcription.

Full Text

The Full Text of this article is available as a PDF (334.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams C. C., Workman J. L. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol Cell Biol. 1995 Mar;15(3):1405–1421. doi: 10.1128/mcb.15.3.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archer T. K., Lefebvre P., Wolford R. G., Hager G. L. Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science. 1992 Mar 20;255(5051):1573–1576. doi: 10.1126/science.1347958. [DOI] [PubMed] [Google Scholar]
  3. Banerjee C., Hiebert S. W., Stein J. L., Lian J. B., Stein G. S. An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4968–4973. doi: 10.1073/pnas.93.10.4968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banerjee C., McCabe L. R., Choi J. Y., Hiebert S. W., Stein J. L., Stein G. S., Lian J. B. Runt homology domain proteins in osteoblast differentiation: AML3/CBFA1 is a major component of a bone-specific complex. J Cell Biochem. 1997 Jul 1;66(1):1–8. doi: 10.1002/(sici)1097-4644(19970701)66:1<1::aid-jcb1>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  5. Beato M., Herrlich P., Schütz G. Steroid hormone receptors: many actors in search of a plot. Cell. 1995 Dec 15;83(6):851–857. doi: 10.1016/0092-8674(95)90201-5. [DOI] [PubMed] [Google Scholar]
  6. Blanco J. C., Wang I. M., Tsai S. Y., Tsai M. J., O'Malley B. W., Jurutka P. W., Haussler M. R., Ozato K. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1535–1539. doi: 10.1073/pnas.92.5.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Breen E. C., van Wijnen A. J., Lian J. B., Stein G. S., Stein J. L. In vivo occupancy of the vitamin D responsive element in the osteocalcin gene supports vitamin D-dependent transcriptional upregulation in intact cells. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12902–12906. doi: 10.1073/pnas.91.26.12902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen H., Li B., Workman J. L. A histone-binding protein, nucleoplasmin, stimulates transcription factor binding to nucleosomes and factor-induced nucleosome disassembly. EMBO J. 1994 Jan 15;13(2):380–390. doi: 10.1002/j.1460-2075.1994.tb06272.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cirillo L. A., Zaret K. S. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol Cell. 1999 Dec;4(6):961–969. doi: 10.1016/s1097-2765(00)80225-7. [DOI] [PubMed] [Google Scholar]
  10. Ducy P., Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol. 1995 Apr;15(4):1858–1869. doi: 10.1128/mcb.15.4.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ducy P., Zhang R., Geoffroy V., Ridall A. L., Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997 May 30;89(5):747–754. doi: 10.1016/s0092-8674(00)80257-3. [DOI] [PubMed] [Google Scholar]
  12. Freedman L. P. Increasing the complexity of coactivation in nuclear receptor signaling. Cell. 1999 Apr 2;97(1):5–8. doi: 10.1016/s0092-8674(00)80708-4. [DOI] [PubMed] [Google Scholar]
  13. Guo B., Aslam F., van Wijnen A. J., Roberts S. G., Frenkel B., Green M. R., DeLuca H., Lian J. B., Stein G. S., Stein J. L. YY1 regulates vitamin D receptor/retinoid X receptor mediated transactivation of the vitamin D responsive osteocalcin gene. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):121–126. doi: 10.1073/pnas.94.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gutiérrez J., Sierra J., Medina R., Puchi M., Imschenetzky M., van Wijnen A., Lian J., Stein G., Stein J., Montecino M. Interaction of CBF alpha/AML/PEBP2 alpha transcription factors with nucleosomes containing promoter sequences requires flexibility in the translational positioning of the histone octamer and exposure of the CBF alpha site. Biochemistry. 2000 Nov 7;39(44):13565–13574. doi: 10.1021/bi0013896. [DOI] [PubMed] [Google Scholar]
  15. Javed A., Gutierrez S., Montecino M., van Wijnen A. J., Stein J. L., Stein G. S., Lian J. B. Multiple Cbfa/AML sites in the rat osteocalcin promoter are required for basal and vitamin D-responsive transcription and contribute to chromatin organization. Mol Cell Biol. 1999 Nov;19(11):7491–7500. doi: 10.1128/mcb.19.11.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lemon B. D., Freedman L. P. Nuclear receptor cofactors as chromatin remodelers. Curr Opin Genet Dev. 1999 Oct;9(5):499–504. doi: 10.1016/s0959-437x(99)00010-6. [DOI] [PubMed] [Google Scholar]
  17. Lian J. B., Stein G. S., Stein J. L., van Wijnen A. J. Regulated expression of the bone-specific osteocalcin gene by vitamins and hormones. Vitam Horm. 1999;55:443–509. doi: 10.1016/s0083-6729(08)60941-3. [DOI] [PubMed] [Google Scholar]
  18. MacDonald P. N., Sherman D. R., Dowd D. R., Jefcoat S. C., Jr, DeLisle R. K. The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem. 1995 Mar 3;270(9):4748–4752. doi: 10.1074/jbc.270.9.4748. [DOI] [PubMed] [Google Scholar]
  19. Merriman H. L., van Wijnen A. J., Hiebert S., Bidwell J. P., Fey E., Lian J., Stein J., Stein G. S. The tissue-specific nuclear matrix protein, NMP-2, is a member of the AML/CBF/PEBP2/runt domain transcription factor family: interactions with the osteocalcin gene promoter. Biochemistry. 1995 Oct 10;34(40):13125–13132. doi: 10.1021/bi00040a025. [DOI] [PubMed] [Google Scholar]
  20. Montecino M., Frenkel B., van Wijnen A. J., Lian J. B., Stein G. S., Stein J. L. Chromatin hyperacetylation abrogates vitamin D-mediated transcriptional upregulation of the tissue-specific osteocalcin gene in vivo. Biochemistry. 1999 Jan 26;38(4):1338–1345. doi: 10.1021/bi982171a. [DOI] [PubMed] [Google Scholar]
  21. Montecino M., Lian J., Stein G., Stein J. Changes in chromatin structure support constitutive and developmentally regulated transcription of the bone-specific osteocalcin gene in osteoblastic cells. Biochemistry. 1996 Apr 16;35(15):5093–5102. doi: 10.1021/bi952489s. [DOI] [PubMed] [Google Scholar]
  22. Montecino M., Pockwinse S., Lian J., Stein G., Stein J. DNase I hypersensitive sites in promoter elements associated with basal and vitamin D dependent transcription of the bone-specific osteocalcin gene. Biochemistry. 1994 Jan 11;33(1):348–353. doi: 10.1021/bi00167a045. [DOI] [PubMed] [Google Scholar]
  23. När A. M., Beaurang P. A., Zhou S., Abraham S., Solomon W., Tjian R. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature. 1999 Apr 29;398(6730):828–832. doi: 10.1038/19789. [DOI] [PubMed] [Google Scholar]
  24. Rachez C., Gamble M., Chang C. P., Atkins G. B., Lazar M. A., Freedman L. P. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol Cell Biol. 2000 Apr;20(8):2718–2726. doi: 10.1128/mcb.20.8.2718-2726.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rachez C., Lemon B. D., Suldan Z., Bromleigh V., Gamble M., När A. M., Erdjument-Bromage H., Tempst P., Freedman L. P. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature. 1999 Apr 29;398(6730):824–828. doi: 10.1038/19783. [DOI] [PubMed] [Google Scholar]
  26. Rachez C., Suldan Z., Ward J., Chang C. P., Burakov D., Erdjument-Bromage H., Tempst P., Freedman L. P. A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 1998 Jun 15;12(12):1787–1800. doi: 10.1101/gad.12.12.1787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Simpson R. T. Nucleosome positioning: occurrence, mechanisms, and functional consequences. Prog Nucleic Acid Res Mol Biol. 1991;40:143–184. doi: 10.1016/s0079-6603(08)60841-7. [DOI] [PubMed] [Google Scholar]
  28. Staal A., van Wijnen A. J., Birkenhäger J. C., Pols H. A., Prahl J., DeLuca H., Gaub M. P., Lian J. B., Stein G. S., van Leeuwen J. P. Distinct conformations of vitamin D receptor/retinoid X receptor-alpha heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes. Mol Endocrinol. 1996 Nov;10(11):1444–1456. doi: 10.1210/mend.10.11.8923469. [DOI] [PubMed] [Google Scholar]
  29. Truss M., Bartsch J., Schelbert A., Haché R. J., Beato M. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 1995 Apr 18;14(8):1737–1751. doi: 10.1002/j.1460-2075.1995.tb07163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wong J., Shi Y. B., Wolffe A. P. Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation. EMBO J. 1997 Jun 2;16(11):3158–3171. doi: 10.1093/emboj/16.11.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Workman J. L., Kingston R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem. 1998;67:545–579. doi: 10.1146/annurev.biochem.67.1.545. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES