Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):677–686. doi: 10.1042/0264-6021:3630677

A continuous-wave electron-nuclear double resonance (X-band) study of the Cu2+ sites of particulate methane mono-oxygenase of Methylococcus capsulatus (strain M) in membrane and pure dopamine beta-mono-oxygenase of the adrenal medulla.

Bettina Katterle 1, Rudolf I Gvozdev 1, Ntei Abudu 1, Torbjørn Ljones 1, K Kristoffer Andersson 1
PMCID: PMC1222520  PMID: 11964168

Abstract

All methanotrophic bacteria express a membrane-bound (particulate) methane mono-oxygenase (pMMO). In the present study, we have investigated pMMO in membrane fragments from Methylococcus capsulatus (strain M). pMMO contains a typical type-2 Cu(2+) centre with the following EPR parameters: g(z) 2.24, g(x,y) 2.06, A(Cu)(z) 19.0 mT and A(Cu)(x,y) 1.0 mT. Simulation of the Cu(2+) spectrum yielded a best match by using four equivalent nitrogens (A(N)=1.5 mT, 42 MHz). Incubation with ferricyanide neither changed nor increased the amount of EPR-active Cu(2+), in contrast with other reports. The EPR visible copper seems not to be part of any cluster, as judged from the microwave power saturation behaviour. Continuous-wave electron-nuclear double resonance (CW ENDOR; 9.4 GHz, 5-20 K) experiments at g( perpendicular) of the Cu(II) spectrum show a weak coupling to protons with an A(H) of 2.9 MHz that corresponds to a distance of 3.8 A (1 A identical with 0.1 nm), assuming that it is a purely dipolar coupling. Incubation in (2)H(2)O leads to a significant decrease in these (1)H-ENDOR intensities, showing that these protons are exchangeable. This result strongly suggests that the EPR visible copper site of pMMO is accessible to solvent, which was confirmed by the chelation of the Cu(2+) by diethyldithiocarbamic acid. The (1)H and (14)N hyperfine coupling constants confirm a histidine ligation of the EPR visible copper site in pMMO. The hyperfine structure in the ENDOR or EPR spectra of pMMO is not influenced by the inhibitors azide, cyanide or ammonia, indicating that they do not bind to the EPR visible copper. We compared pMMO with the type-2 Cu(2+) enzyme, dopamine beta-mono-oxygenase (DbetaM). For DbetaM, it is assumed that the copper site is solvent-accessible. CW ENDOR shows similar weakly coupled and (2)H(2)O-exchangeable protons (2.9 MHz), as observed in pMMO, as well as the strongly coupled nitrogens (40 MHz) from the co-ordinating N of the histidines in DbetaM. In conclusion, the resting EPR visible Cu in pMMO is not part of a trinuclear cluster, as has been suggested previously.

Full Text

The Full Text of this article is available as a PDF (201.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abudu N., Banjaw M. Y., Ljones T. Kinetic studies on the activation of dopamine beta-monooxygenase by copper and vanadium ions. Eur J Biochem. 1998 Nov 1;257(3):622–629. doi: 10.1046/j.1432-1327.1998.2570622.x. [DOI] [PubMed] [Google Scholar]
  2. Blackburn N. J., Collison D., Sutton J., Mabbs F. E. Kinetic and e.p.r. studies of cyanide and azide binding to the copper sites of dopamine (3,4-dihydroxyphenethylamine) beta-mono-oxygenase. Biochem J. 1984 Jun 1;220(2):447–454. doi: 10.1042/bj2200447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blackburn N. J., Concannon M., Shahiyan S. K., Mabbs F. E., Collison D. Active site of dopamine beta-hydroxylase. Comparison of enzyme derivatives containing four and eight copper atoms per tetramer using potentiometry and EPR spectroscopy. Biochemistry. 1988 Aug 9;27(16):6001–6008. doi: 10.1021/bi00416a026. [DOI] [PubMed] [Google Scholar]
  4. Blackburn N. J., Hasnain S. S., Pettingill T. M., Strange R. W. Copper K-extended x-ray absorption fine structure studies of oxidized and reduced dopamine beta-hydroxylase. Confirmation of a sulfur ligand to copper(I) in the reduced enzyme. J Biol Chem. 1991 Dec 5;266(34):23120–23127. [PubMed] [Google Scholar]
  5. Boswell J. S., Reedy B. J., Kulathila R., Merkler D., Blackburn N. J. Structural investigations on the coordination environment of the active-site copper centers of recombinant bifunctional peptidylglycine alpha-amidating enzyme. Biochemistry. 1996 Sep 24;35(38):12241–12250. doi: 10.1021/bi960742y. [DOI] [PubMed] [Google Scholar]
  6. DeRose V. J., Hoffman B. M. Protein structure and mechanism studied by electron nuclear double resonance spectroscopy. Methods Enzymol. 1995;246:554–589. doi: 10.1016/0076-6879(95)46025-x. [DOI] [PubMed] [Google Scholar]
  7. Eipper B. A., Quon A. S., Mains R. E., Boswell J. S., Blackburn N. J. The catalytic core of peptidylglycine alpha-hydroxylating monooxygenase: investigation by site-directed mutagenesis, Cu X-ray absorption spectroscopy, and electron paramagnetic resonance. Biochemistry. 1995 Mar 7;34(9):2857–2865. doi: 10.1021/bi00009a016. [DOI] [PubMed] [Google Scholar]
  8. Hansen A. P., Britt R. D., Klein M. P., Bender C. J., Babcock G. T. ENDOR and ESEEM studies of cytochrome c oxidase: evidence for exchangeable protons at the CuA site. Biochemistry. 1993 Dec 14;32(49):13718–13724. doi: 10.1021/bi00212a042. [DOI] [PubMed] [Google Scholar]
  9. Hoganson C. W., Babcock G. T. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science. 1997 Sep 26;277(5334):1953–1956. doi: 10.1126/science.277.5334.1953. [DOI] [PubMed] [Google Scholar]
  10. Hüttermann J., Kappl R., Banci L., Bertini I. An ENDOR study of human and bovine erythrocyte superoxide dismutase: 1H and 14N interactions. Biochim Biophys Acta. 1988 Sep 21;956(2):173–188. doi: 10.1016/0167-4838(88)90264-6. [DOI] [PubMed] [Google Scholar]
  11. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  12. Klinman Judith P. Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates. Chem Rev. 1996 Nov 7;96(7):2541–2562. doi: 10.1021/cr950047g. [DOI] [PubMed] [Google Scholar]
  13. Kolhekar A. S., Keutmann H. T., Mains R. E., Quon A. S., Eipper B. A. Peptidylglycine alpha-hydroxylating monooxygenase: active site residues, disulfide linkages, and a two-domain model of the catalytic core. Biochemistry. 1997 Sep 9;36(36):10901–10909. doi: 10.1021/bi9708747. [DOI] [PubMed] [Google Scholar]
  14. Ljones T., Flatmark T., Skotland T., Petersson L., Bäckström D., Ehrenberg A. Dopamine beta-monooxygenase: electron paramagnetic resonance and oxidation--reduction properties of the enzyme-bound copper. FEBS Lett. 1978 Aug 1;92(1):81–84. doi: 10.1016/0014-5793(78)80726-1. [DOI] [PubMed] [Google Scholar]
  15. Lo C. M., Fan S. T., Liu C. L., Lo R. J., Lai C. L., Lau G. K., Chan J. K., Ng I. O., Wong J. Five-year experience with the development of a liver transplant program in Hong Kong. Transplant Proc. 1998 Nov;30(7):3247–3248. doi: 10.1016/s0041-1345(98)01013-6. [DOI] [PubMed] [Google Scholar]
  16. MacMillan F., Kannt A., Behr J., Prisner T., Michel H. Direct evidence for a tyrosine radical in the reaction of cytochrome c oxidase with hydrogen peroxide. Biochemistry. 1999 Jul 20;38(29):9179–9184. doi: 10.1021/bi9911987. [DOI] [PubMed] [Google Scholar]
  17. McCracken J., Desai P. R., Papadopoulos N. J., Villafranca J. J., Peisach J. Electron spin-echo studies of the copper(II) binding sites in dopamine beta-hydroxylase. Biochemistry. 1988 May 31;27(11):4133–4137. doi: 10.1021/bi00411a034. [DOI] [PubMed] [Google Scholar]
  18. Nguyen H. H., Elliott S. J., Yip J. H., Chan S. I. The particulate methane monooxygenase from methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. Isolation and characterization. J Biol Chem. 1998 Apr 3;273(14):7957–7966. doi: 10.1074/jbc.273.14.7957. [DOI] [PubMed] [Google Scholar]
  19. Nguyen H. H., Shiemke A. K., Jacobs S. J., Hales B. J., Lidstrom M. E., Chan S. I. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1994 May 27;269(21):14995–15005. [PubMed] [Google Scholar]
  20. Prigge S. T., Kolhekar A. S., Eipper B. A., Mains R. E., Amzel L. M. Amidation of bioactive peptides: the structure of peptidylglycine alpha-hydroxylating monooxygenase. Science. 1997 Nov 14;278(5341):1300–1305. doi: 10.1126/science.278.5341.1300. [DOI] [PubMed] [Google Scholar]
  21. Proshlyakov D. A., Pressler M. A., DeMaso C., Leykam J. F., DeWitt D. L., Babcock G. T. Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science. 2000 Nov 24;290(5496):1588–1591. doi: 10.1126/science.290.5496.1588. [DOI] [PubMed] [Google Scholar]
  22. Smith D. D., Dalton H. Solubilisation of methane monooxygenase from Methylococcus capsulatus (Bath). Eur J Biochem. 1989 Jul 1;182(3):667–671. doi: 10.1111/j.1432-1033.1989.tb14877.x. [DOI] [PubMed] [Google Scholar]
  23. Solomon Edward I., Sundaram Uma M., Machonkin Timothy E. Multicopper Oxidases and Oxygenases. Chem Rev. 1996 Nov 7;96(7):2563–2606. doi: 10.1021/cr950046o. [DOI] [PubMed] [Google Scholar]
  24. Southan C., Kruse L. I. Sequence similarity between dopamine beta-hydroxylase and peptide alpha-amidating enzyme: evidence for a conserved catalytic domain. FEBS Lett. 1989 Sep 11;255(1):116–120. doi: 10.1016/0014-5793(89)81072-5. [DOI] [PubMed] [Google Scholar]
  25. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
  26. Tukhvatullin I. A., Gvozdev R. I., Andersson K. K. The structure of the active center of beta-peptide membrane-bound methane monooxygenase (pMMO) from Methylococcus capsulatus bath. Dokl Biochem. 2000 Sep-Oct;374(1-6):177–182. [PubMed] [Google Scholar]
  27. Yuan H., Collins M. L., Antholine W. E. Concentration of Cu, EPR-detectable Cu, and formation of cupric-ferrocyanide in membranes with pMMO. J Inorg Biochem. 1998 Dec;72(3-4):179–185. doi: 10.1016/s0162-0134(98)10078-8. [DOI] [PubMed] [Google Scholar]
  28. Yuan H., Collins M. L., Antholine W. E. Type 2 Cu2+ in pMMO from Methylomicrobium album BG8. Biophys J. 1999 Apr;76(4):2223–2229. doi: 10.1016/S0006-3495(99)77378-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zahn J. A., DiSpirito A. A. Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol. 1996 Feb;178(4):1018–1029. doi: 10.1128/jb.178.4.1018-1029.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES