Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):687–696. doi: 10.1042/0264-6021:3630687

Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase.

Dominique de Seny 1, Christelle Prosperi-Meys 1, Carine Bebrone 1, Gian Maria Rossolini 1, Michael I Page 1, Philippe Noel 1, Jean-Marie Frère 1, Moreno Galleni 1
PMCID: PMC1222521  PMID: 11964169

Abstract

The metallo-beta-lactamase BcII from Bacillus cereus 569/H/9 possesses a binuclear zinc centre. The mono-zinc form of the enzyme displays an appreciably high activity, although full efficiency is observed for the di-zinc enzyme. In an attempt to assign the involvement of the different zinc ligands in the catalytic properties of BcII, individual substitutions of selected amino acids were generated. With the exception of His(116)-->Ser (H116S), C221A and C221S, the mono- and di-zinc forms of all the other mutants were poorly active. The activity of H116S decreases by a factor of 10 when compared with the wild type. The catalytic efficiency of C221A and C221S was zinc-dependent. The mono-zinc forms of these mutants exhibited a low activity, whereas the catalytic efficiency of their respective di-zinc forms was comparable with that of the wild type. Surprisingly, the zinc contents of the mutants and the wild-type BcII were similar. These data suggest that the affinity of the beta-lactamase for the metal was not affected by the substitution of the ligand. The pH-dependence of the H196S catalytic efficiency indicates that the zinc ions participate in the hydrolysis of the beta-lactam ring by acting as a Lewis acid. The zinc ions activate the catalytic water molecule, but also polarize the carbonyl bond of the beta-lactam ring and stabilize the development of a negative charge on the carbonyl oxygen of the tetrahedral reaction intermediate. Our studies also demonstrate that Asn(233) is not directly involved in the interaction with the substrates.

Full Text

The Full Text of this article is available as a PDF (179.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S., Galdes A., Hill H. A., Smith B. E., Waley S. G., Abraham E. P. Histidine residues of zinc ligands in beta-lactamase II. Biochem J. 1978 Nov 1;175(2):441–447. doi: 10.1042/bj1750441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bicknell R., Schäffer A., Waley S. G., Auld D. S. Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus beta-lactamase II. Biochemistry. 1986 Nov 4;25(22):7208–7215. doi: 10.1021/bi00370a066. [DOI] [PubMed] [Google Scholar]
  3. Bicknell R., Waley S. G. Cryoenzymology of Bacillus cereus beta-lactamase II. Biochemistry. 1985 Nov 19;24(24):6876–6887. doi: 10.1021/bi00345a021. [DOI] [PubMed] [Google Scholar]
  4. Bounaga S., Laws A. P., Galleni M., Page M. I. The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent beta-lactamase. Biochem J. 1998 May 1;331(Pt 3):703–711. doi: 10.1042/bj3310703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carfi A., Duée E., Galleni M., Frère J. M., Dideberg O. 1.85 A resolution structure of the zinc (II) beta-lactamase from Bacillus cereus. Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):313–323. doi: 10.1107/s0907444997010627. [DOI] [PubMed] [Google Scholar]
  6. Carfi A., Pares S., Duée E., Galleni M., Duez C., Frère J. M., Dideberg O. The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 1995 Oct 16;14(20):4914–4921. doi: 10.1002/j.1460-2075.1995.tb00174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chantalat L., Duée E., Galleni M., Frère J. M., Dideberg O. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase. Protein Sci. 2000 Jul;9(7):1402–1406. doi: 10.1110/ps.9.7.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chevrier B., D'Orchymont H., Schalk C., Tarnus C., Moras D. The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit. Eur J Biochem. 1996 Apr 15;237(2):393–398. doi: 10.1111/j.1432-1033.1996.0393k.x. [DOI] [PubMed] [Google Scholar]
  9. Concha N. O., Janson C. A., Rowling P., Pearson S., Cheever C. A., Clarke B. P., Lewis C., Galleni M., Frère J. M., Payne D. J. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry. 2000 Apr 18;39(15):4288–4298. doi: 10.1021/bi992569m. [DOI] [PubMed] [Google Scholar]
  10. Concha N. O., Rasmussen B. A., Bush K., Herzberg O. Crystal structure of the wide-spectrum binuclear zinc beta-lactamase from Bacteroides fragilis. Structure. 1996 Jul 15;4(7):823–836. doi: 10.1016/s0969-2126(96)00089-5. [DOI] [PubMed] [Google Scholar]
  11. Crowder M. W., Wang Z., Franklin S. L., Zovinka E. P., Benkovic S. J. Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. Biochemistry. 1996 Sep 17;35(37):12126–12132. doi: 10.1021/bi960976h. [DOI] [PubMed] [Google Scholar]
  12. De Meester F., Joris B., Reckinger G., Bellefroid-Bourguignon C., Frère J. M., Waley S. G. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol. 1987 Jul 15;36(14):2393–2403. doi: 10.1016/0006-2952(87)90609-5. [DOI] [PubMed] [Google Scholar]
  13. Galleni M., Lamotte-Brasseur J., Rossolini G. M., Spencer J., Dideberg O., Frère J. M., Metallo-beta-lactamases Working Group Standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother. 2001 Mar;45(3):660–663. doi: 10.1128/AAC.45.3.660-663.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Haruta S., Yamaguchi H., Yamamoto E. T., Eriguchi Y., Nukaga M., O'Hara K., Sawai T. Functional analysis of the active site of a metallo-beta-lactamase proliferating in Japan. Antimicrob Agents Chemother. 2000 Sep;44(9):2304–2309. doi: 10.1128/aac.44.9.2304-2309.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hussain M., Carlino A., Madonna M. J., Lampen J. O. Cloning and sequencing of the metallothioprotein beta-lactamase II gene of Bacillus cereus 569/H in Escherichia coli. J Bacteriol. 1985 Oct;164(1):223–229. doi: 10.1128/jb.164.1.223-229.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kiefer L. L., Fierke C. A. Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry. 1994 Dec 27;33(51):15233–15240. doi: 10.1021/bi00255a003. [DOI] [PubMed] [Google Scholar]
  17. Laraki N., Franceschini N., Rossolini G. M., Santucci P., Meunier C., de Pauw E., Amicosante G., Frère J. M., Galleni M. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrob Agents Chemother. 1999 Apr;43(4):902–906. doi: 10.1128/aac.43.4.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Laraki N., Galleni M., Thamm I., Riccio M. L., Amicosante G., Frère J. M., Rossolini G. M. Structure of In31, a blaIMP-containing Pseudomonas aeruginosa integron phyletically related to In5, which carries an unusual array of gene cassettes. Antimicrob Agents Chemother. 1999 Apr;43(4):890–901. doi: 10.1128/aac.43.4.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lim H. M., Iyer R. K., Pène J. J. Site-directed mutagenesis of dicarboxylic acids near the active site of Bacillus cereus 5/B/6 beta-lactamase II. Biochem J. 1991 Jun 1;276(Pt 2):401–404. doi: 10.1042/bj2760401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lim H. M., Pène J. J. Mutations affecting the catalytic activity of Bacillus cereus 5/B/6 beta-lactamase II. J Biol Chem. 1989 Jul 15;264(20):11682–11687. [PubMed] [Google Scholar]
  21. Murphy B. P., Pratt R. F. A thiono-beta-lactam substrate for the beta-lactamase II of Bacillus cereus. Evidence for direct interaction between the essential metal ion and substrate. Biochem J. 1989 Mar 15;258(3):765–768. doi: 10.1042/bj2580765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paul-Soto R., Bauer R., Frère J. M., Galleni M., Meyer-Klaucke W., Nolting H., Rossolini G. M., de Seny D., Hernandez-Valladares M., Zeppezauer M. Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism. J Biol Chem. 1999 May 7;274(19):13242–13249. doi: 10.1074/jbc.274.19.13242. [DOI] [PubMed] [Google Scholar]
  23. Rasmussen B. A., Gluzman Y., Tally F. P. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 1990 Aug;34(8):1590–1592. doi: 10.1128/aac.34.8.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Senda K., Arakawa Y., Ichiyama S., Nakashima K., Ito H., Ohsuka S., Shimokata K., Kato N., Ohta M. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J Clin Microbiol. 1996 Dec;34(12):2909–2913. doi: 10.1128/jcm.34.12.2909-2913.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Senda K., Arakawa Y., Nakashima K., Ito H., Ichiyama S., Shimokata K., Kato N., Ohta M. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob Agents Chemother. 1996 Feb;40(2):349–353. doi: 10.1128/aac.40.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sutton B. J., Artymiuk P. J., Cordero-Borboa A. E., Little C., Phillips D. C., Waley S. G. An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem J. 1987 Nov 15;248(1):181–188. doi: 10.1042/bj2480181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang Z., Fast W., Benkovic S. J. On the mechanism of the metallo-beta-lactamase from Bacteroides fragilis. Biochemistry. 1999 Aug 3;38(31):10013–10023. doi: 10.1021/bi990356r. [DOI] [PubMed] [Google Scholar]
  28. Yanchak M. P., Taylor R. A., Crowder M. W. Mutational analysis of metallo-beta-lactamase CcrA from Bacteroides fragilis. Biochemistry. 2000 Sep 19;39(37):11330–11339. doi: 10.1021/bi0010524. [DOI] [PubMed] [Google Scholar]
  29. Yang Y., Keeney D., Tang X., Canfield N., Rasmussen B. A. Kinetic properties and metal content of the metallo-beta-lactamase CcrA harboring selective amino acid substitutions. J Biol Chem. 1999 May 28;274(22):15706–15711. doi: 10.1074/jbc.274.22.15706. [DOI] [PubMed] [Google Scholar]
  30. Yang Y., Rasmussen B. A., Bush K. Biochemical characterization of the metallo-beta-lactamase CcrA from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 1992 May;36(5):1155–1157. doi: 10.1128/aac.36.5.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zang T. M., Hollman D. A., Crawford P. A., Crowder M. W., Makaroff C. A. Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. J Biol Chem. 2000 Nov 20;276(7):4788–4795. doi: 10.1074/jbc.M005090200. [DOI] [PubMed] [Google Scholar]
  32. de Seny D., Heinz U., Wommer S., Kiefer M., Meyer-Klaucke W., Galleni M., Frere J. M., Bauer R., Adolph H. W. Metal ion binding and coordination geometry for wild type and mutants of metallo-beta -lactamase from Bacillus cereus 569/H/9 (BcII): a combined thermodynamic, kinetic, and spectroscopic approach. J Biol Chem. 2001 Sep 10;276(48):45065–45078. doi: 10.1074/jbc.M106447200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES