Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):745–752. doi: 10.1042/0264-6021:3630745

Threonine-124 and phenylalanine-448 in Citrobacter freundii tyrosine phenol-lyase are necessary for activity with L-tyrosine.

Tatyana V Demidkina 1, Maria V Barbolina 1, Nicolai G Faleev 1, Bakthavatsalam Sundararaju 1, Paul D Gollnick 1, Robert S Phillips 1
PMCID: PMC1222527  PMID: 11964175

Abstract

Thr-124 and Phe-448 are located in the active site of Citrobacter freundii tyrosine phenol-lyase (TPL) near the phenol ring of a bound substrate analogue, 3-(4'-hydroxyphenyl)propionic acid [Sundararaju, Antson, Phillips, Demidkina, Barbolina, Gollnick, Dodson and Wilson (1997) Biochemistry 36, 6502-6510]. Thr-124 is replaced by Asp and Phe-448 is replaced by His in the crystal structure of a structurally similar enzyme, Proteus vulgaris tryptophan indole-lyase, which has 50% identical residues. Hence, Thr-124 and Phe-448 in TPL were mutated to Ala or Asp, and His, respectively, in order to probe the role of these residues in the reaction specificity for L-Tyr. These mutant enzymes have little or no beta-elimination activity with L-Tyr or 3-fluoro-L-Tyr as a substrate, but retain significant elimination activity with S-(o-nitrophenyl)-L-cysteine, S-alkyl-L-cysteines and beta-chloroalanine. Furthermore, the binding of L-Tyr and other non-substrate amino acids is not significantly affected by the mutations. The mutant TPLs form intermediates in rapid-scanning stopped-flow experiments with L-Phe, L-Tyr and L-Trp, similar to those seen with wild-type TPL. These results demonstrate that Thr-124 and Phe-448 are necessary for the reaction specificity of TPL for L-Tyr, and probably play a role in the elimination stage of the reaction mechanism. Thr-124 is within hydrogen-bonding distance of the phenolic group of the bound substrate, and may help to orientate the ring for beta-elimination to occur. Phe-448 may be important to allow the formation of the closed conformation during the reaction.

Full Text

The Full Text of this article is available as a PDF (259.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander F. W., Sandmeier E., Mehta P. K., Christen P. Evolutionary relationships among pyridoxal-5'-phosphate-dependent enzymes. Regio-specific alpha, beta and gamma families. Eur J Biochem. 1994 Feb 1;219(3):953–960. doi: 10.1111/j.1432-1033.1994.tb18577.x. [DOI] [PubMed] [Google Scholar]
  2. Antson A. A., Demidkina T. V., Gollnick P., Dauter Z., von Tersch R. L., Long J., Berezhnoy S. N., Phillips R. S., Harutyunyan E. H., Wilson K. S. Three-dimensional structure of tyrosine phenol-lyase. Biochemistry. 1993 Apr 27;32(16):4195–4206. doi: 10.1021/bi00067a006. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Chen H., Gollnick P., Phillips R. S. Site-directed mutagenesis of His343-->Ala in Citrobacter freundii tyrosine phenol-lyase. Effects on the kinetic mechanism and rate-determining step. Eur J Biochem. 1995 Apr 15;229(2):540–549. [PubMed] [Google Scholar]
  5. Chen H., Phillips R. S. Binding of phenol and analogues to alanine complexes of tyrosine phenol-lyase from Citrobacter freundii: implications for the mechanisms of alpha,beta-elimination and alanine racemization. Biochemistry. 1993 Nov 2;32(43):11591–11599. doi: 10.1021/bi00094a016. [DOI] [PubMed] [Google Scholar]
  6. Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
  7. Demidkina T. V., Myagkikh I. V., Azhayev A. V. Transamination catalysed by tyrosine phenol-lyase from Citrobacter intermedius. Eur J Biochem. 1987 Dec 30;170(1-2):311–316. doi: 10.1111/j.1432-1033.1987.tb13701.x. [DOI] [PubMed] [Google Scholar]
  8. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faleev N. G., Ruvinov S. B., Bakhmutov V. I., Demidkina T. V., Miagkikh I. V. Substratnaia spetsifichnost' tirozin-fenol-liazy. Elektronnyi i stericheskii kontrol' na stadii otshchepleniia aromaticheskogo fragmenta. Mol Biol (Mosk) 1987 Nov-Dec;21(6):1636–1644. [PubMed] [Google Scholar]
  10. Faleev N. G., Ruvinov S. B., Demidkina T. V., Myagkikh I. V., Gololobov MYu, Bakhmutov V. I., Belikov V. M. Tyrosine phenol-lyase from Citrobacter intermedius. Factors controlling substrate specificity. Eur J Biochem. 1988 Nov 1;177(2):395–401. doi: 10.1111/j.1432-1033.1988.tb14388.x. [DOI] [PubMed] [Google Scholar]
  11. Isupov M. N., Antson A. A., Dodson E. J., Dodson G. G., Dementieva I. S., Zakomirdina L. N., Wilson K. S., Dauter Z., Lebedev A. A., Harutyunyan E. H. Crystal structure of tryptophanase. J Mol Biol. 1998 Feb 27;276(3):603–623. doi: 10.1006/jmbi.1997.1561. [DOI] [PubMed] [Google Scholar]
  12. Kiick D. M., Phillips R. S. Mechanistic deductions from kinetic isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Erwinia herbicola and Citrobacter freundii tyrosine phenol-lyase. Biochemistry. 1988 Sep 20;27(19):7333–7338. doi: 10.1021/bi00419a023. [DOI] [PubMed] [Google Scholar]
  13. Kiick D. M., Phillips R. S. Mechanistic deductions from multiple kinetic and solvent deuterium isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: Escherichia coli tryptophan indole-lyase. Biochemistry. 1988 Sep 20;27(19):7339–7344. doi: 10.1021/bi00419a024. [DOI] [PubMed] [Google Scholar]
  14. Kumagai H., Yamada H., Matsui H., Ohkishi H., Ogata K. Tyrosine phenol lyase. I. Purification, crystallization, and properties. J Biol Chem. 1970 Apr 10;245(7):1767–1772. [PubMed] [Google Scholar]
  15. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muro T., Nakatani H., Hiromi K., Kumagai H., Yamada H. Elementary processes in the interaction of tyrosine phenol lyase with inhibitors and substrate. J Biochem. 1978 Sep;84(3):633–640. doi: 10.1093/oxfordjournals.jbchem.a132168. [DOI] [PubMed] [Google Scholar]
  17. NEWTON W. A., SNELL E. E. An inducible tryptophan synthetase in tryptophan auxotrophs of Escherichia coli. Proc Natl Acad Sci U S A. 1962 Aug;48:1431–1439. doi: 10.1073/pnas.48.8.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Phillips R. S. Reactions of O-acyl-L-serines with tryptophanase, tyrosine phenol-lyase, and tryptophan synthase. Arch Biochem Biophys. 1987 Jul;256(1):302–310. doi: 10.1016/0003-9861(87)90450-4. [DOI] [PubMed] [Google Scholar]
  19. Phillips Robert S., Johnson Nancy, Kamath Ajith V. Formation in vitro of hybrid dimers of H463F and Y74F mutant Escherichia coli tryptophan indole-lyase rescues activity with L-tryptophan. Biochemistry. 2002 Mar 26;41(12):4012–4019. doi: 10.1021/bi015838t. [DOI] [PubMed] [Google Scholar]
  20. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strickland S., Palmer G., Massey V. Determination of dissociation constants and specific rate constants of enzyme-substrate (or protein-ligand) interactions from rapid reaction kinetic data. J Biol Chem. 1975 Jun 10;250(11):4048–4052. [PubMed] [Google Scholar]
  22. Sundararaju B., Antson A. A., Phillips R. S., Demidkina T. V., Barbolina M. V., Gollnick P., Dodson G. G., Wilson K. S. The crystal structure of Citrobacter freundii tyrosine phenol-lyase complexed with 3-(4'-hydroxyphenyl)propionic acid, together with site-directed mutagenesis and kinetic analysis, demonstrates that arginine 381 is required for substrate specificity. Biochemistry. 1997 May 27;36(21):6502–6510. doi: 10.1021/bi962917+. [DOI] [PubMed] [Google Scholar]
  23. Sundararaju B., Chen H., Shilcutt S., Phillips R. S. The role of glutamic acid-69 in the activation of Citrobacter freundii tyrosine phenol-lyase by monovalent cations. Biochemistry. 2000 Jul 25;39(29):8546–8555. doi: 10.1021/bi000063u. [DOI] [PubMed] [Google Scholar]
  24. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Toney M. D., Kirsch J. F. Tyrosine 70 fine-tunes the catalytic efficiency of aspartate aminotransferase. Biochemistry. 1991 Jul 30;30(30):7456–7461. doi: 10.1021/bi00244a013. [DOI] [PubMed] [Google Scholar]
  26. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES