Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):801–807. doi: 10.1042/0264-6021:3630801

The role of alpha-methylacyl-CoA racemase in bile acid synthesis.

Dean A Cuebas 1, Christopher Phillips 1, Werner Schmitz 1, Ernst Conzelmann 1, Dmitry K Novikov 1
PMCID: PMC1222534  PMID: 11964182

Abstract

According to current views, the second peroxisomal beta-oxidation pathway is responsible for the degradation of the side chain of bile acid intermediates. Peroxisomal multifunctional enzyme type 2 [peroxisomal multifunctional 2-enoyl-CoA hydratase/(R)-3-hydroxyacyl-CoA dehydrogenase; MFE-2] catalyses the second (hydration) and third (dehydrogenation) reactions of the pathway. Deficiency of MFE-2 leads to accumulation of very-long-chain fatty acids, 2-methyl-branched fatty acids and C(27) bile acid intermediates in plasma, but bile acid synthesis is not blocked completely. In this study we describe an alternative pathway, which allows MFE-2 deficiency to be overcome. The alternative pathway consists of alpha-methylacyl-CoA racemase and peroxisomal multifunctional enzyme type 1 [peroxisomal multifunctional 2-enoyl-CoA hydratase/(S)-3-hydroxyacyl-CoA dehydrogenase; MFE-1]. (24E)-3alpha,7alpha,12alpha-Trihydroxy-5beta-cholest-24-enoyl-CoA, the presumed physiological isomer, is hydrated by MFE-1 with the formation of (24S,25S)-3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestanoyl-CoA [(24S,25S)-24-OH-THCA-CoA], which after conversion by a alpha-methylacyl-CoA racemase into the (24S,25R) isomer can again be dehydrogenated by MFE-1 to 24-keto-3alpha,7alpha,12alpha-trihydroxycholestanoyl-CoA, a physiological intermediate in cholic acid synthesis. The discovery of the alternative pathway of cholesterol side-chain oxidation will improve diagnosis of peroxisomal deficiencies by identification of serum 24-OH-THCA-CoA diastereomer profiles.

Full Text

The Full Text of this article is available as a PDF (163.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonenkov V. D., Van Veldhoven P. P., Waelkens E., Mannaerts G. P. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates. J Biol Chem. 1997 Oct 10;272(41):26023–26031. doi: 10.1074/jbc.272.41.26023. [DOI] [PubMed] [Google Scholar]
  2. Batta A. K., Salen G., Shefer S., Dayal B., Tint G. S. Configuration at C-25 in 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid isolated from human bile. J Lipid Res. 1983 Jan;24(1):94–96. [PubMed] [Google Scholar]
  3. Batta A. K., Tint G. S., Dayal B., Shefer S., Salen G. Improved synthesis of 3 alpha, 7 alpha, 12 alpha, 24 = xi-tetrahydroxy-5 beta-cholestan-26-oic acid. Steroids. 1982 Jun;39(6):693–702. doi: 10.1016/0039-128x(82)90140-4. [DOI] [PubMed] [Google Scholar]
  4. Björkhem I., Lütjohann D., Diczfalusy U., Ståhle L., Ahlborg G., Wahren J. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res. 1998 Aug;39(8):1594–1600. [PubMed] [Google Scholar]
  5. Dieuaide-Noubhani M., Novikov D., Baumgart E., Vanhooren J. C., Fransen M., Goethals M., Vandekerckhove J., Van Veldhoven P. P., Mannaerts G. P. Further characterization of the peroxisomal 3-hydroxyacyl-CoA dehydrogenases from rat liver. Relationship between the different dehydrogenases and evidence that fatty acids and the C27 bile acids di- and tri-hydroxycoprostanic acids are metabolized by separate multifunctional proteins. Eur J Biochem. 1996 Sep 15;240(3):660–666. doi: 10.1111/j.1432-1033.1996.0660h.x. [DOI] [PubMed] [Google Scholar]
  6. Ferdinandusse S., Denis S., Clayton P. T., Graham A., Rees J. E., Allen J. T., McLean B. N., Brown A. Y., Vreken P., Waterham H. R. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Genet. 2000 Feb;24(2):188–191. doi: 10.1038/72861. [DOI] [PubMed] [Google Scholar]
  7. Iqbal M. N., Patrick P. H., Elliott W. H. Bile acids. LXXXI. Synthesis and structural assignment of E/Z isomers of substituted methyl hydroxy-5 beta-cholest-24-en-26-oates. Steroids. 1991 Oct;56(10):505–512. doi: 10.1016/0039-128x(91)90115-c. [DOI] [PubMed] [Google Scholar]
  8. Jiang L. L., Kurosawa T., Sato M., Suzuki Y., Hashimoto T. Physiological role of D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein. J Biochem. 1997 Mar;121(3):506–513. doi: 10.1093/oxfordjournals.jbchem.a021615. [DOI] [PubMed] [Google Scholar]
  9. Li J. X., Smeland T. E., Schulz H. D-3-hydroxyacyl coenzyme A dehydratase from rat liver peroxisomes. Purification and characterization of a novel enzyme necessary for the epimerization of 3-hydroxyacyl-CoA thioesters. J Biol Chem. 1990 Aug 15;265(23):13629–13634. [PubMed] [Google Scholar]
  10. Lund E. G., Guileyardo J. M., Russell D. W. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7238–7243. doi: 10.1073/pnas.96.13.7238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mingrone G., Greco A. V. Reversed-phase high-performance liquid chromatographic separation and quantification of individual human bile acids. J Chromatogr. 1980 Sep 12;183(3):277–286. doi: 10.1016/s0378-4347(00)81707-7. [DOI] [PubMed] [Google Scholar]
  12. Novikov D., Dieuaide-Noubhani M., Vermeesch J. R., Fournier B., Mannaerts G. P., Van Veldhoven P. P. The human peroxisomal multifunctional protein involved in bile acid synthesis: activity measurement, deficiency in Zellweger syndrome and chromosome mapping. Biochim Biophys Acta. 1997 May 24;1360(3):229–240. doi: 10.1016/s0925-4439(97)00003-3. [DOI] [PubMed] [Google Scholar]
  13. Ostlund Farrants A. K., Björkhem I., Pedersen J. I. Identification of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholest-24-enoic acid as an intermediate in the peroxisomal conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid to cholic acid. Biochim Biophys Acta. 1989 Apr 3;1002(2):198–202. doi: 10.1016/0005-2760(89)90287-7. [DOI] [PubMed] [Google Scholar]
  14. Osumi T., Hashimoto T. Peroxisomal beta oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1979 Jul 27;89(2):580–584. doi: 10.1016/0006-291x(79)90669-7. [DOI] [PubMed] [Google Scholar]
  15. Qin Y. M., Haapalainen A. M., Conry D., Cuebas D. A., Hiltunen J. K., Novikov D. K. Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis. Biochem J. 1997 Dec 1;328(Pt 2):377–382. doi: 10.1042/bj3280377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Russell D. W., Setchell K. D. Bile acid biosynthesis. Biochemistry. 1992 May 26;31(20):4737–4749. doi: 10.1021/bi00135a001. [DOI] [PubMed] [Google Scholar]
  17. Schmitz W., Albers C., Fingerhut R., Conzelmann E. Purification and characterization of an alpha-methylacyl-CoA racemase from human liver. Eur J Biochem. 1995 Aug 1;231(3):815–822. doi: 10.1111/j.1432-1033.1995.tb20766.x. [DOI] [PubMed] [Google Scholar]
  18. Schmitz W., Conzelmann E. Stereochemistry of peroxisomal and mitochondrial beta-oxidation of alpha-methylacyl-CoAs. Eur J Biochem. 1997 Mar 1;244(2):434–440. doi: 10.1111/j.1432-1033.1997.00434.x. [DOI] [PubMed] [Google Scholar]
  19. Schmitz W., Fingerhut R., Conzelmann E. Purification and properties of an alpha-methylacyl-CoA racemase from rat liver. Eur J Biochem. 1994 Jun 1;222(2):313–323. doi: 10.1111/j.1432-1033.1994.tb18870.x. [DOI] [PubMed] [Google Scholar]
  20. Schulz H. Long chain enoyl coenzyme A hydratase from pig heart. J Biol Chem. 1974 May 10;249(9):2704–2709. [PubMed] [Google Scholar]
  21. Sedmak J. J., Grossberg S. E. A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem. 1977 May 1;79(1-2):544–552. doi: 10.1016/0003-2697(77)90428-6. [DOI] [PubMed] [Google Scholar]
  22. Shefer S., Cheng F. W., Batta A. K., Dayal B., Tint G. S., Salen G., Mosbach E. H. Stereospecific side chain hydroxylations in the biosynthesis of chenodeoxycholic acid. J Biol Chem. 1978 Sep 25;253(18):6386–6392. [PubMed] [Google Scholar]
  23. Une M., Konishi M., Suzuki Y., Akaboshi S., Yoshii M., Kuramoto T., Fujimura K. Bile acid profiles in a peroxisomal D-3-hydroxyacyl-CoA dehydratase/D-3-hydroxyacyl-CoA dehydrogenase bifunctional protein deficiency. J Biochem. 1997 Sep;122(3):655–658. doi: 10.1093/oxfordjournals.jbchem.a021803. [DOI] [PubMed] [Google Scholar]
  24. Une M., Nagai F., Kihira K., Kuramoto T., Hoshita T. Synthesis of four diastereoisomers at carbons 24 and 25 of 3 alpha,7 alpha,12 alpha,24-tetrahydroxy-5 beta-cholestan-26-oic acid, intermediates of bile acid biosynthesis. J Lipid Res. 1983 Jul;24(7):924–929. [PubMed] [Google Scholar]
  25. Van Veldhoven P. P., Croes K., Asselberghs S., Herdewijn P., Mannaerts G. P. Peroxisomal beta-oxidation of 2-methyl-branched acyl-CoA esters: stereospecific recognition of the 2S-methyl compounds by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase. FEBS Lett. 1996 Jun 10;388(1):80–84. doi: 10.1016/0014-5793(96)00508-x. [DOI] [PubMed] [Google Scholar]
  26. Van Veldhoven P. P., Mannaerts G. P. Role and organization of peroxisomal beta-oxidation. Adv Exp Med Biol. 1999;466:261–272. doi: 10.1007/0-306-46818-2_31. [DOI] [PubMed] [Google Scholar]
  27. Van Veldhoven P. P., Vanhove G., Assselberghs S., Eyssen H. J., Mannaerts G. P. Substrate specificities of rat liver peroxisomal acyl-CoA oxidases: palmitoyl-CoA oxidase (inducible acyl-CoA oxidase), pristanoyl-CoA oxidase (non-inducible acyl-CoA oxidase), and trihydroxycoprostanoyl-CoA oxidase. J Biol Chem. 1992 Oct 5;267(28):20065–20074. [PubMed] [Google Scholar]
  28. Verhoeven N. M., Schor D. S., Struys E. A., Jansen E. E., ten Brink HJ, Wanders R. J., Jakobs C. Analysis of pristanic acid beta-oxidation intermediates in plasma from healthy controls and patients affected with peroxisomal disorders by stable isotope dilution gas chromatography mass spectrometry. J Lipid Res. 1999 Feb;40(2):260–266. [PubMed] [Google Scholar]
  29. Vreken P., van Rooij A., Denis S., van Grunsven E. G., Cuebas D. A., Wanders R. J. Sensitive analysis of serum 3alpha, 7alpha, 12alpha,24-tetrahydroxy- 5beta-cholestan-26-oic acid diastereomers using gas chromatography-mass spectrometry and its application in peroxisomal D-bifunctional protein deficiency. J Lipid Res. 1998 Dec;39(12):2452–2458. [PubMed] [Google Scholar]
  30. Xu R., Cuebas D. A. The reactions catalyzed by the inducible bifunctional enzyme of rat liver peroxisomes cannot lead to the formation of bile acids. Biochem Biophys Res Commun. 1996 Apr 16;221(2):271–278. doi: 10.1006/bbrc.1996.0585. [DOI] [PubMed] [Google Scholar]
  31. van Grunsven E. G., van Berkel E., Ijlst L., Vreken P., de Klerk J. B., Adamski J., Lemonde H., Clayton P. T., Cuebas D. A., Wanders R. J. Peroxisomal D-hydroxyacyl-CoA dehydrogenase deficiency: resolution of the enzyme defect and its molecular basis in bifunctional protein deficiency. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2128–2133. doi: 10.1073/pnas.95.5.2128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Grunsven E. G., van Berkel E., Mooijer P. A., Watkins P. A., Moser H. W., Suzuki Y., Jiang L. L., Hashimoto T., Hoefler G., Adamski J. Peroxisomal bifunctional protein deficiency revisited: resolution of its true enzymatic and molecular basis. Am J Hum Genet. 1999 Jan;64(1):99–107. doi: 10.1086/302180. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES