Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):817–823. doi: 10.1042/0264-6021:3630817

Mo(V) co-ordination in the periplasmic nitrate reductase from Paracoccus pantotrophus probed by electron nuclear double resonance (ENDOR) spectroscopy.

Clive S Butler 1, Shirley A Fairhurst 1, Stuart J Ferguson 1, Andrew J Thomson 1, Ben C Berks 1, David J Richardson 1, David J Lowe 1
PMCID: PMC1222536  PMID: 11964184

Abstract

The first electron nuclear double resonance (ENDOR) study of a member of the Mo-bis-molybdopterin guanine dinucleotide family of molybdoenzymes is presented, using the periplasmic nitrate reductase from Paracoccus pantotrophus. Rapid freeze-quenched time-resolved EPR revealed that during turnover the intensity of a Mo(V) EPR signal known as High-g [resting] increases. This signal is split by two interacting protons that are not solvent-exchangeable. X-band proton-ENDOR analysis resolved broad symmetrical resonance features that arose from four classes of protons weakly coupled to the Mo(V). Signals from two of these were lost upon exchange into deuterated buffer, suggesting that they may originate from OH(-) or H(2)O groups. One of these signals was also lost when the enzyme was redox-cycled in the presence of azide. Since these protons are very weakly coupled OH/H(2)O groups, they are not likely to be ligated directly to the Mo(V). This suggests that protonation of a Mo(VI)zO group does not occur on reduction to Mo(V), but most probably accompanies reduction of Mo(V) to Mo(IV). A resonance feature from a more strongly coupled proton, that was not lost following exchange into deuterated buffer, could also be resolved at 22-24 MHz. The anisotropy of this feature, determined from ENDOR spectra collected at a range of field positions, indicated a Mo-proton distance of approx. 3.2 A, consistent with this being one of the beta-methylene protons of a Mo-Cys ligand.

Full Text

The Full Text of this article is available as a PDF (206.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett B., Benson N., McEwan A. G., Bray R. C. Multiple states of the molybdenum centre of dimethylsulphoxide reductase from Rhodobacter capsulatus revealed by EPR spectroscopy. Eur J Biochem. 1994 Oct 1;225(1):321–331. doi: 10.1111/j.1432-1033.1994.00321.x. [DOI] [PubMed] [Google Scholar]
  2. Bennett B., Berks B. C., Ferguson S. J., Thomson A. J., Richardson D. J. Mo(V) electron paramagnetic resonance signals from the periplasmic nitrate reductase of Thiosphaera pantotropha. Eur J Biochem. 1994 Dec 15;226(3):789–798. doi: 10.1111/j.1432-1033.1994.00789.x. [DOI] [PubMed] [Google Scholar]
  3. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta. 1995 Dec 12;1232(3):97–173. doi: 10.1016/0005-2728(95)00092-5. [DOI] [PubMed] [Google Scholar]
  4. Berks B. C., Richardson D. J., Reilly A., Willis A. C., Ferguson S. J. The napEDABC gene cluster encoding the periplasmic nitrate reductase system of Thiosphaera pantotropha. Biochem J. 1995 Aug 1;309(Pt 3):983–992. doi: 10.1042/bj3090983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berks B. C., Richardson D. J., Robinson C., Reilly A., Aplin R. T., Ferguson S. J. Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha. Eur J Biochem. 1994 Feb 15;220(1):117–124. doi: 10.1111/j.1432-1033.1994.tb18605.x. [DOI] [PubMed] [Google Scholar]
  6. Boyington J. C., Gladyshev V. N., Khangulov S. V., Stadtman T. C., Sun P. D. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science. 1997 Feb 28;275(5304):1305–1308. doi: 10.1126/science.275.5304.1305. [DOI] [PubMed] [Google Scholar]
  7. Breton J., Berks B. C., Reilly A., Thomson A. J., Ferguson S. J., Richardson D. J. Characterization of the paramagnetic iron-containing redox centres of Thiosphaera pantotropha periplasmic nitrate reductase. FEBS Lett. 1994 May 23;345(1):76–80. doi: 10.1016/0014-5793(94)00445-5. [DOI] [PubMed] [Google Scholar]
  8. Butler C. S., Charnock J. M., Bennett B., Sears H. J., Reilly A. J., Ferguson S. J., Garner C. D., Lowe D. J., Thomson A. J., Berks B. C. Models for molybdenum coordination during the catalytic cycle of periplasmic nitrate reductase from Paracoccus denitrificans derived from EPR and EXAFS spectroscopy. Biochemistry. 1999 Jul 13;38(28):9000–9012. doi: 10.1021/bi990402n. [DOI] [PubMed] [Google Scholar]
  9. Butler C. S., Charnock J. M., Garner C. D., Thomson A. J., Ferguson S. J., Berks B. C., Richardson D. J. Thiocyanate binding to the molybdenum centre of the periplasmic nitrate reductase from Paracoccus pantotrophus. Biochem J. 2000 Dec 15;352(Pt 3):859–864. [PMC free article] [PubMed] [Google Scholar]
  10. Butler C. S., Ferguson S. J., Berks B. C., Thomson A. J., Cheesman M. R., Richardson D. J. Assignment of haem ligands and detection of electronic absorption bands of molybdenum in the di-haem periplasmic nitrate reductase of Paracoccus pantotrophus. FEBS Lett. 2001 Jun 29;500(1-2):71–74. doi: 10.1016/s0014-5793(01)02577-7. [DOI] [PubMed] [Google Scholar]
  11. Czjzek M., Dos Santos J. P., Pommier J., Giordano G., Méjean V., Haser R. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution. J Mol Biol. 1998 Nov 27;284(2):435–447. doi: 10.1006/jmbi.1998.2156. [DOI] [PubMed] [Google Scholar]
  12. Dias J. M., Than M. E., Humm A., Huber R., Bourenkov G. P., Bartunik H. D., Bursakov S., Calvete J., Caldeira J., Carneiro C. Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure. 1999 Jan 15;7(1):65–79. doi: 10.1016/s0969-2126(99)80010-0. [DOI] [PubMed] [Google Scholar]
  13. Howes B. D., Bray R. C., Richards R. L., Turner N. A., Bennett B., Lowe D. J. Evidence favoring molybdenum-carbon bond formation in xanthine oxidase action: 17Q- and 13C-ENDOR and kinetic studies. Biochemistry. 1996 Feb 6;35(5):1432–1443. doi: 10.1021/bi9520500. [DOI] [PubMed] [Google Scholar]
  14. Ludwig W., Mittenhuber G., Friedrich C. G. Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol. 1993 Apr;43(2):363–367. doi: 10.1099/00207713-43-2-363. [DOI] [PubMed] [Google Scholar]
  15. Manikandan P., Choi E. Y., Hille R., Hoffman B. M. 35 GHz ENDOR characterization of the "very rapid" signal of xanthine oxidase reacted with 2-hydroxy-6-methylpurine (13C8): evidence against direct Mo-C8 interaction. J Am Chem Soc. 2001 Mar 21;123(11):2658–2663. doi: 10.1021/ja003894w. [DOI] [PubMed] [Google Scholar]
  16. Schindelin H., Kisker C., Hilton J., Rajagopalan K. V., Rees D. C. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science. 1996 Jun 14;272(5268):1615–1621. doi: 10.1126/science.272.5268.1615. [DOI] [PubMed] [Google Scholar]
  17. Schneider F., Löwe J., Huber R., Schindelin H., Kisker C., Knäblein J. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 A resolution. J Mol Biol. 1996 Oct 18;263(1):53–69. doi: 10.1006/jmbi.1996.0555. [DOI] [PubMed] [Google Scholar]
  18. Sears H. J., Bennett B., Spiro S., Thomson A. J., Richardson D. J. Identification of periplasmic nitrate reductase Mo(V) EPR signals in intact cells of Paracoccus denitrificans. Biochem J. 1995 Aug 15;310(Pt 1):311–314. doi: 10.1042/bj3100311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sears HJ, Little PJ, Richardson DJ, Berks BC, Spiro S, Ferguson SJ. Identification of an assimilatory nitrate reductase in mutants of Paracoccus denitrificans GB17 deficient in nitrate respiration. Arch Microbiol. 1997 Jan 29;167(1):61–66. doi: 10.1007/s002030050417. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES