Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 1;363(Pt 3):833–838. doi: 10.1042/0264-6021:3630833

Glutathione synthetase from Plasmodium falciparum.

Svenja Meierjohann 1, Rolf D Walter 1, Sylke Müller 1
PMCID: PMC1222538  PMID: 11964186

Abstract

GSH is the major low-molecular-mass thiol in most organisms. The tripeptide maintains a reduced intracellular environment and protects cellular components from damaging oxidation. GSH is synthesized by the action of two ATP-dependent enzymic steps, in which gamma-glutamylcysteine synthetase (gamma-GCS) catalyses the ligation of glutamate and cysteine and subsequently glutathione synthetase (GS) adds glycine to the dipeptide. Recently it was shown that the synthesis of gamma-glutamylcysteine is crucial for the survival of the erythrocytic stages of the malaria parasite Plasmodium falciparum by using the specific gamma-GCS inhibitor buthionine sulphoximine. In order to investigate further the synthetic pathway of the tripeptide in the parasite, GS was cloned and expressed recombinantly. The deduced amino acid sequence of P. falciparum GS shares only a moderate degree of identity with other known GSs, but the residues responsible for substrate and co-factor binding are almost all conserved, with the exception of the ones involved in gamma-glutamylcysteine binding. The protein is active as a dimer, with a subunit molecular mass of 77 kDa, and the addition of reducing reagents such as dithiothreitol is essential in maintaining enzymic activity, indicating that thiol groups are important for stability and enzymic activity. The K(app)(m) values for gamma-glutamyl-alpha-aminobutyrate, ATP and glycine were determined to be 107.1 microM, 59.1 microM and 5.04 mM, respectively, and the V(max) of 5.24 +/- 0.7 micromol.min(-1).mg(-1) was in the same range as that of the mammalian enzymes. However, the negative co-operativity observed for gamma-glutamylcysteine binding to the rat enzyme was not found for the parasite protein. This may be due to the alteration of several amino acids in the gamma-glutamylcysteine-binding site.

Full Text

The Full Text of this article is available as a PDF (290.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555. doi: 10.1016/s0076-6879(85)13073-9. [DOI] [PubMed] [Google Scholar]
  2. Atamna H., Ginsburg H. The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur J Biochem. 1997 Dec 15;250(3):670–679. doi: 10.1111/j.1432-1033.1997.00670.x. [DOI] [PubMed] [Google Scholar]
  3. Ayi K., Cappadoro M., Branca M., Turrini F., Arese P. Plasmodium falciparum glutathione metabolism and growth are independent of glutathione system of host erythrocyte. FEBS Lett. 1998 Mar 13;424(3):257–261. doi: 10.1016/s0014-5793(98)00185-9. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Clos J., Brandau S. pJC20 and pJC40--two high-copy-number vectors for T7 RNA polymerase-dependent expression of recombinant genes in Escherichia coli. Protein Expr Purif. 1994 Apr;5(2):133–137. doi: 10.1006/prep.1994.1020. [DOI] [PubMed] [Google Scholar]
  6. Dahl N., Pigg M., Ristoff E., Gali R., Carlsson B., Mannervik B., Larsson A., Board P. Missense mutations in the human glutathione synthetase gene result in severe metabolic acidosis, 5-oxoprolinuria, hemolytic anemia and neurological dysfunction. Hum Mol Genet. 1997 Jul;6(7):1147–1152. doi: 10.1093/hmg/6.7.1147. [DOI] [PubMed] [Google Scholar]
  7. Gali R. R., Board P. G. Identification of an essential cysteine residue in human glutathione synthase. Biochem J. 1997 Jan 1;321(Pt 1):207–210. doi: 10.1042/bj3210207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilberger T. W., Schirmer R. H., Walter R. D., Müller S. Deletion of the parasite-specific insertions and mutation of the catalytic triad in glutathione reductase from chloroquine-sensitive Plasmodium falciparum 3D7. Mol Biochem Parasitol. 2000 Apr 15;107(2):169–179. doi: 10.1016/s0166-6851(00)00188-2. [DOI] [PubMed] [Google Scholar]
  9. Ginsburg H., Atamna H. The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite. 1994 Mar;1(1):5–13. doi: 10.1051/parasite/1994011005. [DOI] [PubMed] [Google Scholar]
  10. Grant C. M., MacIver F. H., Dawes I. W. Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol Biol Cell. 1997 Sep;8(9):1699–1707. doi: 10.1091/mbc.8.9.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Har-El R., Marva E., Chevion M., Golenser J. Is hemin responsible for the susceptibility of Plasmodia to oxidant stress? Free Radic Res Commun. 1993;18(5):279–290. doi: 10.3109/10715769309147495. [DOI] [PubMed] [Google Scholar]
  12. Huang C. S., He W., Meister A., Anderson M. E. Amino acid sequence of rat kidney glutathione synthetase. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1232–1236. doi: 10.1073/pnas.92.4.1232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunt N. H., Stocker R. Oxidative stress and the redox status of malaria-infected erythrocytes. Blood Cells. 1990;16(2-3):499–530. [PubMed] [Google Scholar]
  14. Lueder D. V., Phillips M. A. Characterization of Trypanosoma brucei gamma-glutamylcysteine synthetase, an essential enzyme in the biosynthesis of trypanothione (diglutathionylspermidine). J Biol Chem. 1996 Jul 19;271(29):17485–17490. doi: 10.1074/jbc.271.29.17485. [DOI] [PubMed] [Google Scholar]
  15. Luo J. L., Huang C. S., Babaoglu K., Anderson M. E. Novel kinetics of mammalian glutathione synthetase: characterization of gamma-glutamyl substrate cooperative binding. Biochem Biophys Res Commun. 2000 Aug 28;275(2):577–581. doi: 10.1006/bbrc.2000.3337. [DOI] [PubMed] [Google Scholar]
  16. Lüersen K., Walter R. D., Müller S. Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione. Biochem J. 2000 Mar 1;346(Pt 2):545–552. [PMC free article] [PubMed] [Google Scholar]
  17. Lüersen K., Walter R. D., Müller S. The putative gamma-glutamylcysteine synthetase from Plasmodium falciparum contains large insertions and a variable tandem repeat. Mol Biochem Parasitol. 1999 Jan 5;98(1):131–142. doi: 10.1016/s0166-6851(98)00161-3. [DOI] [PubMed] [Google Scholar]
  18. Njålsson R., Carlsson K., Olin B., Carlsson B., Whitbread L., Polekhina G., Parker M. W., Norgren S., Mannervik B., Board P. G. Kinetic properties of missense mutations in patients with glutathione synthetase deficiency. Biochem J. 2000 Jul 1;349(Pt 1):275–279. doi: 10.1042/0264-6021:3490275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Polekhina G., Board P. G., Gali R. R., Rossjohn J., Parker M. W. Molecular basis of glutathione synthetase deficiency and a rare gene permutation event. EMBO J. 1999 Jun 15;18(12):3204–3213. doi: 10.1093/emboj/18.12.3204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schofield L. On the function of repetitive domains in protein antigens of Plasmodium and other eukaryotic parasites. Parasitol Today. 1991 May;7(5):99–105. doi: 10.1016/0169-4758(91)90166-l. [DOI] [PubMed] [Google Scholar]
  21. Shi Z. Z., Habib G. M., Rhead W. J., Gahl W. A., He X., Sazer S., Lieberman M. W. Mutations in the glutathione synthetase gene cause 5-oxoprolinuria. Nat Genet. 1996 Nov;14(3):361–365. doi: 10.1038/ng1196-361. [DOI] [PubMed] [Google Scholar]
  22. Sies H. Zur Biochemie der Thiolgruppe: Bedeutung des Glutathions. Naturwissenschaften. 1989 Feb;76(2):57–64. doi: 10.1007/BF00396705. [DOI] [PubMed] [Google Scholar]
  23. Simões A. P., van den Berg J. J., Roelofsen B., Op den Kamp J. A. Lipid peroxidation in Plasmodium falciparum-parasitized human erythrocytes. Arch Biochem Biophys. 1992 Nov 1;298(2):651–657. doi: 10.1016/0003-9861(92)90462-6. [DOI] [PubMed] [Google Scholar]
  24. Tanaka T., Kato H., Nishioka T., Oda J. Mutational and proteolytic studies on a flexible loop in glutathione synthetase from Escherichia coli B: the loop and arginine 233 are critical for the catalytic reaction. Biochemistry. 1992 Mar 3;31(8):2259–2265. doi: 10.1021/bi00123a007. [DOI] [PubMed] [Google Scholar]
  25. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  26. Umlas J., Fallon J. N. New thick-film technique for malaria diagnosis. Use of saponin stromatolytic solution for lysis. Am J Trop Med Hyg. 1971 Jul;20(4):527–529. doi: 10.4269/ajtmh.1971.20.527. [DOI] [PubMed] [Google Scholar]
  27. Wang C. L., Oliver D. J. Identification of a putative flexible loop in Arabidopsis glutathione synthetase. Biochem J. 1997 Feb 15;322(Pt 1):241–244. doi: 10.1042/bj3220241. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES