Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):25–31. doi: 10.1042/bj3640025

Characteristics of physiological inducers of the ethanol utilization (alc) pathway in Aspergillus nidulans.

Michel Flipphi 1, Janina Kocialkowska 1, Béatrice Felenbok 1
PMCID: PMC1222541  PMID: 11988072

Abstract

The ethanol utilization (alc) pathway in Aspergillus nidulans is one of the strongest expressed gene systems in filamentous fungi. The pathway-specific activator AlcR requires the presence of an inducing compound to activate transcription of genes under its control. We have demonstrated recently that acetaldehyde is the sole physiological inducer of ethanol catabolism. In the present study we show that compounds with catabolism related to that of ethanol, i.e. primary alcohols, primary monoamines and l-threonine, act as inducers because their breakdown results in the production of inducing aliphatic aldehydes. Such aldehydes were shown to induce the alc genes efficiently at low external concentrations. When ethanol is mixed with representatives of another class of strong direct inducers, ketones, the physiological inducer, acetaldehyde, prevails as effector. Although direct inducers essentially carry a carbonyl function, not all aldehydes and ketones act as inducers. Structural features discriminating non-inducing from inducing compounds concern: (i) the length of the aliphatic side group(s); (ii) the presence and nature of any non-aliphatic substituent. These characteristics enable us to predict whether or not a given carbonyl compound will induce the alc genes.

Full Text

The Full Text of this article is available as a PDF (238.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apirion D. The two-way selection of mutants and revertants in respect of acetate utilization and resistance to fluoro-acetate in Aspergillus nidulans. Genet Res. 1965 Nov;6(3):317–329. doi: 10.1017/s0016672300004213. [DOI] [PubMed] [Google Scholar]
  2. Armitt S., McCullough W., Roberts C. F. Analysis of acetate non-utilizing (acu) mutants in Aspergillus nidulans. J Gen Microbiol. 1976 Feb;92(2):263–282. doi: 10.1099/00221287-92-2-263. [DOI] [PubMed] [Google Scholar]
  3. Baldomà L., Aguilar J. Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J Biol Chem. 1987 Oct 15;262(29):13991–13996. [PubMed] [Google Scholar]
  4. Braun K. P., Cody R. B., Jr, Jones D. R., Peterson C. M. A structural assignment for a stable acetaldehyde-lysine adduct. J Biol Chem. 1995 May 12;270(19):11263–11266. doi: 10.1074/jbc.270.19.11263. [DOI] [PubMed] [Google Scholar]
  5. Caddick M. X., Greenland A. J., Jepson I., Krause K. P., Qu N., Riddell K. V., Salter M. G., Schuch W., Sonnewald U., Tomsett A. B. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol. 1998 Feb;16(2):177–180. doi: 10.1038/nbt0298-177. [DOI] [PubMed] [Google Scholar]
  6. Cahuzac B., Cerdan R., Felenbok B., Guittet E. The solution structure of an AlcR-DNA complex sheds light onto the unique tight and monomeric DNA binding of a Zn(2)Cys(6) protein. Structure. 2001 Sep;9(9):827–836. doi: 10.1016/s0969-2126(01)00640-2. [DOI] [PubMed] [Google Scholar]
  7. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  8. Creaser E. H., Porter R. L., Britt K. A., Pateman J. A., Doy C. H. Purification and preliminary characterization of alcohol dehydrogenase from Aspergillus nidulans. Biochem J. 1985 Jan 15;225(2):449–454. doi: 10.1042/bj2250449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crebelli R., Conti G., Conti L., Carere A. A comparative study on ethanol and acetaldehyde as inducers of chromosome malsegregation in Aspergillus nidulans. Mutat Res. 1989 Dec;215(2):187–195. doi: 10.1016/0027-5107(89)90183-8. [DOI] [PubMed] [Google Scholar]
  10. Delcasso-Tremousaygue D., Grellet F., Panabieres F., Ananiev E. D., Delseny M. Structural and transcriptional characterization of the external spacer of a ribosomal RNA nuclear gene from a higher plant. Eur J Biochem. 1988 Mar 15;172(3):767–776. doi: 10.1111/j.1432-1033.1988.tb13956.x. [DOI] [PubMed] [Google Scholar]
  11. Des Etages S. A., Saxena D., Huang H. L., Falvey D. A., Barber D., Brandriss M. C. Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae. Mol Microbiol. 2001 May;40(4):890–899. doi: 10.1046/j.1365-2958.2001.02432.x. [DOI] [PubMed] [Google Scholar]
  12. Felenbok B., Flipphi M., Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucleic Acid Res Mol Biol. 2001;69:149–204. doi: 10.1016/s0079-6603(01)69047-0. [DOI] [PubMed] [Google Scholar]
  13. Felenbok B., Sealy-Lewis H. M. Alcohol metabolism. Prog Ind Microbiol. 1994;29:141–179. [PubMed] [Google Scholar]
  14. Felenbok B., Sequeval D., Mathieu M., Sibley S., Gwynne D. I., Davies R. W. The ethanol regulon in Aspergillus nidulans: characterization and sequence of the positive regulatory gene alcR. Gene. 1988 Dec 20;73(2):385–396. doi: 10.1016/0378-1119(88)90503-3. [DOI] [PubMed] [Google Scholar]
  15. Felenbok B. The ethanol utilization regulon of Aspergillus nidulans: the alcA-alcR system as a tool for the expression of recombinant proteins. J Biotechnol. 1991 Jan;17(1):11–17. doi: 10.1016/0168-1656(91)90023-o. [DOI] [PubMed] [Google Scholar]
  16. Fidel S., Doonan J. H., Morris N. R. Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a gamma-actin. Gene. 1988 Oct 30;70(2):283–293. doi: 10.1016/0378-1119(88)90200-4. [DOI] [PubMed] [Google Scholar]
  17. Fillinger S., Felenbok B. A newly identified gene cluster in Aspergillus nidulans comprises five novel genes localized in the alc region that are controlled both by the specific transactivator AlcR and the general carbon-catabolite repressor CreA. Mol Microbiol. 1996 May;20(3):475–488. doi: 10.1046/j.1365-2958.1996.5301061.x. [DOI] [PubMed] [Google Scholar]
  18. Fillinger S., Panozzo C., Mathieu M., Felenbok B. The basal level of transcription of the alc genes in the ethanol regulon in Aspergillus nidulans is controlled both by the specific transactivator AlcR and the general carbon catabolite repressor CreA. FEBS Lett. 1995 Jul 24;368(3):547–550. doi: 10.1016/0014-5793(95)00736-s. [DOI] [PubMed] [Google Scholar]
  19. Flipphi M., Mathieu M., Cirpus I., Panozzo C., Felenbok B. Regulation of the aldehyde dehydrogenase gene (aldA) and its role in the control of the coinducer level necessary for induction of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem. 2000 Dec 1;276(10):6950–6958. doi: 10.1074/jbc.M005769200. [DOI] [PubMed] [Google Scholar]
  20. Hondmann D. H., Busink R., Witteveen C. F., Visser J. Glycerol catabolism in Aspergillus nidulans. J Gen Microbiol. 1991 Mar;137(3):629–636. doi: 10.1099/00221287-137-3-629. [DOI] [PubMed] [Google Scholar]
  21. Kulmburg P., Mathieu M., Dowzer C., Kelly J., Felenbok B. Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon catabolite repression in Aspergillus nidulans. Mol Microbiol. 1993 Mar;7(6):847–857. doi: 10.1111/j.1365-2958.1993.tb01175.x. [DOI] [PubMed] [Google Scholar]
  22. Lenouvel F., Nikolaev I., Felenbok B. In vitro recognition of specific DNA targets by AlcR, a zinc binuclear cluster activator different from the other proteins of this class. J Biol Chem. 1997 Jun 13;272(24):15521–15526. doi: 10.1074/jbc.272.24.15521. [DOI] [PubMed] [Google Scholar]
  23. Lockington R. A., Sealy-Lewis H. M., Scazzocchio C., Davies R. W. Cloning and characterization of the ethanol utilization regulon in Aspergillus nidulans. Gene. 1985;33(2):137–149. doi: 10.1016/0378-1119(85)90088-5. [DOI] [PubMed] [Google Scholar]
  24. Lockington R., Scazzocchio C., Sequeval D., Mathieu M., Felenbok B. Regulation of alcR, the positive regulatory gene of the ethanol utilization regulon of Aspergillus nidulans. Mol Microbiol. 1987 Nov;1(3):275–281. doi: 10.1111/j.1365-2958.1987.tb01933.x. [DOI] [PubMed] [Google Scholar]
  25. Lord J. M. Glycolate oxidoreductase in Escherichia coli. Biochim Biophys Acta. 1972 May 25;267(2):227–237. doi: 10.1016/0005-2728(72)90111-9. [DOI] [PubMed] [Google Scholar]
  26. Mathieu M., Felenbok B. The Aspergillus nidulans CREA protein mediates glucose repression of the ethanol regulon at various levels through competition with the ALCR-specific transactivator. EMBO J. 1994 Sep 1;13(17):4022–4027. doi: 10.1002/j.1460-2075.1994.tb06718.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mathieu M., Fillinger S., Felenbok B. In vivo studies of upstream regulatory cis-acting elements of the alcR gene encoding the transactivator of the ethanol regulon in Aspergillus nidulans. Mol Microbiol. 2000 Apr;36(1):123–131. doi: 10.1046/j.1365-2958.2000.01833.x. [DOI] [PubMed] [Google Scholar]
  28. Monschau N., Stahmann K. P., Sahm H., McNeil J. B., Bognar A. L. Identification of Saccharomyces cerevisiae GLY1 as a threonine aldolase: a key enzyme in glycine biosynthesis. FEMS Microbiol Lett. 1997 May 1;150(1):55–60. doi: 10.1111/j.1574-6968.1997.tb10349.x. [DOI] [PubMed] [Google Scholar]
  29. Nikolaev I., Lenouvel F., Felenbok B. Unique DNA binding specificity of the binuclear zinc AlcR activator of the ethanol utilization pathway in Aspergillus nidulans. J Biol Chem. 1999 Apr 2;274(14):9795–9802. doi: 10.1074/jbc.274.14.9795. [DOI] [PubMed] [Google Scholar]
  30. Panozzo C., Capuano V., Fillinger S., Felenbok B. The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. J Biol Chem. 1997 Sep 5;272(36):22859–22865. doi: 10.1074/jbc.272.36.22859. [DOI] [PubMed] [Google Scholar]
  31. Panozzo C., Cornillot E., Felenbok B. The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. J Biol Chem. 1998 Mar 13;273(11):6367–6372. doi: 10.1074/jbc.273.11.6367. [DOI] [PubMed] [Google Scholar]
  32. Pateman J. A., Doy C. H., Olsen J. E., Norris U., Creaser E. H., Hynes M. Regulation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) in Aspergillus nidulans. Proc R Soc Lond B Biol Sci. 1983 Feb 22;217(1208):243–264. doi: 10.1098/rspb.1983.0009. [DOI] [PubMed] [Google Scholar]
  33. Pateman J. A., Dunn E., Kinghorn J. R., Forbes E. C. The transport of ammonium and methylammonium in wild type and mutant cells of Aspergillus nidulans. Mol Gen Genet. 1974;133(3):225–236. doi: 10.1007/BF00267672. [DOI] [PubMed] [Google Scholar]
  34. Pickett M., Gwynne D. I., Buxton F. P., Elliott R., Davies R. W., Lockington R. A., Scazzocchio C., Sealy-Lewis H. M. Cloning and characterization of the aldA gene of Aspergillus nidulans. Gene. 1987;51(2-3):217–226. doi: 10.1016/0378-1119(87)90310-6. [DOI] [PubMed] [Google Scholar]
  35. Quintilla F. X., Baldoma L., Badia J., Aguilar J. Aldehyde dehydrogenase induction by glutamate in Escherichia coli. Role of 2-oxoglutarate. Eur J Biochem. 1991 Dec 18;202(3):1321–1325. doi: 10.1111/j.1432-1033.1991.tb16506.x. [DOI] [PubMed] [Google Scholar]
  36. Sandeman R. A., Hynes M. J. Isolation of the facA (acetyl-coenzyme A synthetase) and acuE (malate synthase) genes of Aspergillus nidulans. Mol Gen Genet. 1989 Jul;218(1):87–92. doi: 10.1007/BF00330569. [DOI] [PubMed] [Google Scholar]
  37. Tuma D. J., Smith S. L., Sorrell M. F. Acetaldehyde and microtubules. Ann N Y Acad Sci. 1991;625:786–792. doi: 10.1111/j.1749-6632.1991.tb33920.x. [DOI] [PubMed] [Google Scholar]
  38. Wang D., Hu Y., Zheng F., Zhou K., Kohlhaw G. B. Evidence that intramolecular interactions are involved in masking the activation domain of transcriptional activator Leu3p. J Biol Chem. 1997 Aug 1;272(31):19383–19392. doi: 10.1074/jbc.272.31.19383. [DOI] [PubMed] [Google Scholar]
  39. Waring R. B., May G. S., Morris N. R. Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene. 1989 Jun 30;79(1):119–130. doi: 10.1016/0378-1119(89)90097-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES