Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):57–63. doi: 10.1042/bj3640057

mu-1,2-Peroxobridged di-iron(III) dimer formation in human H-chain ferritin.

Fadi Bou-Abdallah 1, Georgia C Papaefthymiou 1, Danielle M Scheswohl 1, Sean D Stanga 1, Paolo Arosio 1, N Dennis Chasteen 1
PMCID: PMC1222545  PMID: 11988076

Abstract

Biomineralization of the ferritin iron core involves a complex series of events in which H(2)O(2) is produced during iron oxidation by O(2) at a dinuclear centre, the 'ferroxidase site', located on the H-subunit of mammalian proteins. Rapid-freeze quench Mössbauer spectroscopy was used to probe the early events of iron oxidation and mineralization in recombinant human ferritin containing 24 H-subunits. The spectra reveal that a mu-1,2-peroxodiFe(III) intermediate (species P) with Mössbauer parameters delta (isomer shift)=0.58 mm/s and DeltaE(Q) (quadrupole splitting)=1.07 mm/s at 4.2 K is formed within 50 ms of mixing Fe(II) with the apoprotein. This intermediate accounts for almost all of the iron in the sample at 160 ms. It subsequently decays within 10 s to form a mu-oxodiFe(III)-protein complex (species D), which partially vacates the ferroxidase sites of the protein to generate Fe(III) clusters (species C) at a reaction time of 10 min. The intermediate peroxodiFe(III) complex does not decay under O(2)-limiting conditions, an observation suggesting inhibition of decay by unreacted Fe(II), or a possible role for O(2) in ferritin biomineralization in addition to that of direct oxidation of iron(II).

Full Text

The Full Text of this article is available as a PDF (163.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauminger E. R., Harrison P. M., Hechel D., Hodson N. W., Nowik I., Treffry A., Yewdall S. J. Iron (II) oxidation and early intermediates of iron-core formation in recombinant human H-chain ferritin. Biochem J. 1993 Dec 15;296(Pt 3):709–719. doi: 10.1042/bj2960709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauminger E. R., Harrison P. M., Hechel D., Nowik I., Treffry A. Mössbauer spectroscopic investigation of structure-function relations in ferritins. Biochim Biophys Acta. 1991 Dec 11;1118(1):48–58. doi: 10.1016/0167-4838(91)90440-b. [DOI] [PubMed] [Google Scholar]
  3. Bauminger E. R., Harrison P. M., Nowik I., Treffry A. Mössbauer spectroscopic study of the initial stages of iron-core formation in horse spleen apoferritin: evidence for both isolated Fe(III) atoms and oxo-bridged Fe(III) dimers as early intermediates. Biochemistry. 1989 Jun 27;28(13):5486–5493. doi: 10.1021/bi00439a025. [DOI] [PubMed] [Google Scholar]
  4. Bauminger E. R., Treffry A., Quail M. A., Zhao Z., Nowik I., Harrison P. M. Stages in iron storage in the ferritin of Escherichia coli (EcFtnA): analysis of Mössbauer spectra reveals a new intermediate. Biochemistry. 1999 Jun 15;38(24):7791–7802. doi: 10.1021/bi990377l. [DOI] [PubMed] [Google Scholar]
  5. Broadwater J. A., Achim C., Münck E., Fox B. G. Mössbauer studies of the formation and reactivity of a quasi-stable peroxo intermediate of stearoyl-acyl carrier protein Delta 9-desaturase. Biochemistry. 1999 Sep 21;38(38):12197–12204. doi: 10.1021/bi9914199. [DOI] [PubMed] [Google Scholar]
  6. Chasteen N. D., Harrison P. M. Mineralization in ferritin: an efficient means of iron storage. J Struct Biol. 1999 Jun 30;126(3):182–194. doi: 10.1006/jsbi.1999.4118. [DOI] [PubMed] [Google Scholar]
  7. Harrison P. M., Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996 Jul 31;1275(3):161–203. doi: 10.1016/0005-2728(96)00022-9. [DOI] [PubMed] [Google Scholar]
  8. Hwang J., Krebs C., Huynh B. H., Edmondson D. E., Theil E. C., Penner-Hahn J. E. A short Fe-Fe distance in peroxodiferric ferritin: control of Fe substrate versus cofactor decay? Science. 2000 Jan 7;287(5450):122–125. doi: 10.1126/science.287.5450.122. [DOI] [PubMed] [Google Scholar]
  9. Ilari A., Stefanini S., Chiancone E., Tsernoglou D. The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site. Nat Struct Biol. 2000 Jan;7(1):38–43. doi: 10.1038/71236. [DOI] [PubMed] [Google Scholar]
  10. Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
  11. Le Brun N. E., Wilson M. T., Andrews S. C., Guest J. R., Harrison P. M., Thomson A. J., Moore G. R. Kinetic and structural characterization of an intermediate in the biomineralization of bacterioferritin. FEBS Lett. 1993 Oct 25;333(1-2):197–202. doi: 10.1016/0014-5793(93)80404-i. [DOI] [PubMed] [Google Scholar]
  12. Levi S., Salfeld J., Franceschinelli F., Cozzi A., Dorner M. H., Arosio P. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry. 1989 Jun 13;28(12):5179–5184. doi: 10.1021/bi00438a040. [DOI] [PubMed] [Google Scholar]
  13. Levi S., Yewdall S. J., Harrison P. M., Santambrogio P., Cozzi A., Rovida E., Albertini A., Arosio P. Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem J. 1992 Dec 1;288(Pt 2):591–596. doi: 10.1042/bj2880591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moënne-Loccoz P., Krebs C., Herlihy K., Edmondson D. E., Theil E. C., Huynh B. H., Loehr T. M. The ferroxidase reaction of ferritin reveals a diferric mu-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins. Biochemistry. 1999 Apr 27;38(17):5290–5295. doi: 10.1021/bi990095l. [DOI] [PubMed] [Google Scholar]
  15. Nordlund P., Sjöberg B. M., Eklund H. Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature. 1990 Jun 14;345(6276):593–598. doi: 10.1038/345593a0. [DOI] [PubMed] [Google Scholar]
  16. Pereira A. S., Small W., Krebs C., Tavares P., Edmondson D. E., Theil E. C., Huynh B. H. Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Biochemistry. 1998 Jul 14;37(28):9871–9876. doi: 10.1021/bi980847w. [DOI] [PubMed] [Google Scholar]
  17. Pereira A. S., Tavares P., Lloyd S. G., Danger D., Edmondson D. E., Theil E. C., Huynh B. H. Rapid and parallel formation of Fe3+ multimers, including a trimer, during H-type subunit ferritin mineralization. Biochemistry. 1997 Jun 24;36(25):7917–7927. doi: 10.1021/bi970348f. [DOI] [PubMed] [Google Scholar]
  18. Rosenzweig A. C., Frederick C. A., Lippard S. J., Nordlund P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature. 1993 Dec 9;366(6455):537–543. doi: 10.1038/366537a0. [DOI] [PubMed] [Google Scholar]
  19. Sun S., Chasteen N. D. Rapid kinetics of the EPR-active species formed during initial iron uptake in horse spleen apoferritin. Biochemistry. 1994 Dec 20;33(50):15095–15102. doi: 10.1021/bi00254a019. [DOI] [PubMed] [Google Scholar]
  20. Treffry A., Zhao Z., Quail M. A., Guest J. R., Harrison P. M. Dinuclear center of ferritin: studies of iron binding and oxidation show differences in the two iron sites. Biochemistry. 1997 Jan 14;36(2):432–441. doi: 10.1021/bi961830l. [DOI] [PubMed] [Google Scholar]
  21. Treffry A., Zhao Z., Quail M. A., Guest J. R., Harrison P. M. Iron(II) oxidation by H chain ferritin: evidence from site-directed mutagenesis that a transient blue species is formed at the dinuclear iron center. Biochemistry. 1995 Nov 21;34(46):15204–15213. doi: 10.1021/bi00046a028. [DOI] [PubMed] [Google Scholar]
  22. Waldo G. S., Ling J., Sanders-Loehr J., Theil E. C. Formation of an Fe(III)-tyrosinate complex during biomineralization of H-subunit ferritin. Science. 1993 Feb 5;259(5096):796–798. doi: 10.1126/science.8430332. [DOI] [PubMed] [Google Scholar]
  23. Waldo G. S., Theil E. C. Formation of iron(III)-tyrosinate is the fastest reaction observed in ferritin. Biochemistry. 1993 Dec 7;32(48):13262–13269. doi: 10.1021/bi00211a039. [DOI] [PubMed] [Google Scholar]
  24. Xu B., Chasteen N. D. Iron oxidation chemistry in ferritin. Increasing Fe/O2 stoichiometry during core formation. J Biol Chem. 1991 Oct 25;266(30):19965–19970. [PubMed] [Google Scholar]
  25. Yang X., Chen-Barrett Y., Arosio P., Chasteen N. D. Reaction paths of iron oxidation and hydrolysis in horse spleen and recombinant human ferritins. Biochemistry. 1998 Jul 7;37(27):9743–9750. doi: 10.1021/bi973128a. [DOI] [PubMed] [Google Scholar]
  26. Yang X., Chiancone E., Stefanini S., Ilari A., Chasteen N. D. Iron oxidation and hydrolysis reactions of a novel ferritin from Listeria innocua. Biochem J. 2000 Aug 1;349(Pt 3):783–786. doi: 10.1042/bj3490783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yang X., Le Brun N. E., Thomson A. J., Moore G. R., Chasteen N. D. The iron oxidation and hydrolysis chemistry of Escherichia coli bacterioferritin. Biochemistry. 2000 Apr 25;39(16):4915–4923. doi: 10.1021/bi992631f. [DOI] [PubMed] [Google Scholar]
  28. Zhao G., Bou-Abdallah F., Yang X., Arosio P., Chasteen N. D. Is hydrogen peroxide produced during iron(II) oxidation in mammalian apoferritins? Biochemistry. 2001 Sep 11;40(36):10832–10838. doi: 10.1021/bi011052j. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES