Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):73–79. doi: 10.1042/bj3640073

A novel pathway for adrenergic stimulation of cAMP-response-element-binding protein (CREB) phosphorylation: mediation via alpha1-adrenoceptors and protein kinase C activation.

Håkan Thonberg 1, J Magnus Fredriksson 1, Jan Nedergaard 1, Barbara Cannon 1
PMCID: PMC1222547  PMID: 11988078

Abstract

Because of the central role of adrenergic mechanisms in the expression of crucial genes during brown adipocyte differentiation, we examined the activation (phosphorylation) of CREB (cAMP-response-element-binding protein) in mouse brown adipocytes in primary culture. We found that noradrenaline ('norepinephrine') stimulated CREB phosphorylation rapidly (maximum effect in < or =5 min with slow decay) and efficiently (EC(50), 6 nM). The increase in CREB phosphorylation coincided with increased expression of an artificial cAMP-response-element-containing reporter construct. CREB phosphorylation was partly inhibitable, both by the beta-adrenergic antagonist propranolol and by the alpha(1)-adrenergic antagonist prazosin. Adenylate cyclase hyperactivation (by forskolin) could stimulate CREB phosphorylation to the same extent as noradrenaline. The alpha(1)-adrenergic agonist cirazoline also increased CREB phosphorylation. An increase in intracellular [Ca(2+)] had, however, no effect, but protein kinase C activation by PMA was a potent stimulator. The cirazoline-stimulated (alpha(1)-adrenergic) CREB phosphorylation was inhibited by a desensitizing pretreatment with PMA, demonstrating that the alpha(1)-stimulation was mediated via protein kinase C activation; neither Src nor extracellular-signal-regulated kinases 1 and 2 activation was involved in the signalling process. We conclude that CREB phosphorylation in brown adipocytes is mediated not only through the classical beta-adrenergic/cAMP pathway but also through a novel alpha(1)-adrenergic/protein kinase C/CREB pathway, which has not been described previously in any tissue.

Full Text

The Full Text of this article is available as a PDF (165.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrisani O. M. CREB-mediated transcriptional control. Crit Rev Eukaryot Gene Expr. 1999;9(1):19–32. [PubMed] [Google Scholar]
  2. Arthur J. S., Cohen P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett. 2000 Sep 29;482(1-2):44–48. doi: 10.1016/s0014-5793(00)02031-7. [DOI] [PubMed] [Google Scholar]
  3. Barge R. M., Mills I., Silva J. E., Larsen P. R. Phorbol esters, protein kinase C, and thyroxine 5'-deiodinase in brown adipocytes. Am J Physiol. 1988 Mar;254(3 Pt 1):E323–E327. doi: 10.1152/ajpendo.1988.254.3.E323. [DOI] [PubMed] [Google Scholar]
  4. Bito H., Deisseroth K., Tsien R. W. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell. 1996 Dec 27;87(7):1203–1214. doi: 10.1016/s0092-8674(00)81816-4. [DOI] [PubMed] [Google Scholar]
  5. Borner C., Guadagno S. N., Fabbro D., Weinstein I. B. Expression of four protein kinase C isoforms in rat fibroblasts. Distinct subcellular distribution and regulation by calcium and phorbol esters. J Biol Chem. 1992 Jun 25;267(18):12892–12899. [PubMed] [Google Scholar]
  6. Bronnikov G. E., Zhang S. J., Cannon B., Nedergaard J. A dual component analysis explains the distinctive kinetics of cAMP accumulation in brown adipocytes. J Biol Chem. 1999 Dec 31;274(53):37770–37780. doi: 10.1074/jbc.274.53.37770. [DOI] [PubMed] [Google Scholar]
  7. Bronnikov G., Bengtsson T., Kramarova L., Golozoubova V., Cannon B., Nedergaard J. beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct beta-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology. 1999 Sep;140(9):4185–4197. doi: 10.1210/endo.140.9.6972. [DOI] [PubMed] [Google Scholar]
  8. Bronnikov G., Houstek J., Nedergaard J. Beta-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via beta 1 but not via beta 3 adrenoceptors. J Biol Chem. 1992 Jan 25;267(3):2006–2013. [PubMed] [Google Scholar]
  9. Cannon B., Jacobsson A., Rehnmark S., Nedergaard J. Signal transduction in brown adipose tissue recruitment: noradrenaline and beyond. Int J Obes Relat Metab Disord. 1996 Mar;20 (Suppl 3):S36–S42. [PubMed] [Google Scholar]
  10. Cao W., Medvedev A. V., Daniel K. W., Collins S. beta-Adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem. 2001 May 21;276(29):27077–27082. doi: 10.1074/jbc.M101049200. [DOI] [PubMed] [Google Scholar]
  11. Chaudhry A., Granneman J. G. Differential regulation of functional responses by beta-adrenergic receptor subtypes in brown adipocytes. Am J Physiol. 1999 Jul;277(1 Pt 2):R147–R153. doi: 10.1152/ajpregu.1999.277.1.R147. [DOI] [PubMed] [Google Scholar]
  12. Cotecchia S., Kobilka B. K., Daniel K. W., Nolan R. D., Lapetina E. Y., Caron M. G., Lefkowitz R. J., Regan J. W. Multiple second messenger pathways of alpha-adrenergic receptor subtypes expressed in eukaryotic cells. J Biol Chem. 1990 Jan 5;265(1):63–69. [PubMed] [Google Scholar]
  13. Deak M., Clifton A. D., Lucocq L. M., Alessi D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998 Aug 3;17(15):4426–4441. doi: 10.1093/emboj/17.15.4426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fredriksson J. M., Lindquist J. M., Bronnikov G. E., Nedergaard J. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta -adrenoreceptor/cAMP/protein kinase A pathway involving Src but independently of Erk1/2. J Biol Chem. 2000 May 5;275(18):13802–13811. doi: 10.1074/jbc.275.18.13802. [DOI] [PubMed] [Google Scholar]
  15. Fredriksson J. M., Thonberg H., Ohlson K. B., Ohba K., Cannon B., Nedergaard J. Analysis of inhibition by H89 of UCP1 gene expression and thermogenesis indicates protein kinase A mediation of beta(3)-adrenergic signalling rather than beta(3)-adrenoceptor antagonism by H89. Biochim Biophys Acta. 2001 Apr 23;1538(2-3):206–217. doi: 10.1016/s0167-4889(01)00070-2. [DOI] [PubMed] [Google Scholar]
  16. García-Sáinz J. A., Vázquez-Prado J., Villalobos-Molina R. Alpha 1-adrenoceptors: subtypes, signaling, and roles in health and disease. Arch Med Res. 1999 Nov-Dec;30(6):449–458. doi: 10.1016/s0188-0128(99)00059-7. [DOI] [PubMed] [Google Scholar]
  17. Grewal S. S., Fass D. M., Yao H., Ellig C. L., Goodman R. H., Stork P. J. Calcium and cAMP signals differentially regulate cAMP-responsive element-binding protein function via a Rap1-extracellular signal-regulated kinase pathway. J Biol Chem. 2000 Nov 3;275(44):34433–34441. doi: 10.1074/jbc.M004728200. [DOI] [PubMed] [Google Scholar]
  18. Jockers R., Issad T., Zilberfarb V., de Coppet P., Marullo S., Strosberg A. D. Desensitization of the beta-adrenergic response in human brown adipocytes. Endocrinology. 1998 Jun;139(6):2676–2684. doi: 10.1210/endo.139.6.6050. [DOI] [PubMed] [Google Scholar]
  19. Kozak U. C., Kopecky J., Teisinger J., Enerbäck S., Boyer B., Kozak L. P. An upstream enhancer regulating brown-fat-specific expression of the mitochondrial uncoupling protein gene. Mol Cell Biol. 1994 Jan;14(1):59–67. doi: 10.1128/mcb.14.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee S. C., Nuccitelli R., Pappone P. A. Adrenergically activated Ca2+ increases in brown fat cells: effects of Ca2+, K+, and K channel block. Am J Physiol. 1993 Jan;264(1 Pt 1):C217–C228. doi: 10.1152/ajpcell.1993.264.1.C217. [DOI] [PubMed] [Google Scholar]
  21. Lin R. Z., Chen J., Hu Z. W., Hoffman B. B. Phosphorylation of the cAMP response element-binding protein and activation of transcription by alpha1 adrenergic receptors. J Biol Chem. 1998 Nov 6;273(45):30033–30038. doi: 10.1074/jbc.273.45.30033. [DOI] [PubMed] [Google Scholar]
  22. Lindquist J. M., Fredriksson J. M., Rehnmark S., Cannon B., Nedergaard J. Beta 3- and alpha1-adrenergic Erk1/2 activation is Src- but not Gi-mediated in Brown adipocytes. J Biol Chem. 2000 Jul 28;275(30):22670–22677. doi: 10.1074/jbc.M909093199. [DOI] [PubMed] [Google Scholar]
  23. Lindquist J. M., Rehnmark S. Ambient temperature regulation of apoptosis in brown adipose tissue. Erk1/2 promotes norepinephrine-dependent cell survival. J Biol Chem. 1998 Nov 13;273(46):30147–30156. doi: 10.1074/jbc.273.46.30147. [DOI] [PubMed] [Google Scholar]
  24. Minneman K. P., Lee D., Zhong H., Berts A., Abbott K. L., Murphy T. J. Transcriptional responses to growth factor and G protein-coupled receptors in PC12 cells: comparison of alpha(1)-adrenergic receptor subtypes. J Neurochem. 2000 Jun;74(6):2392–2400. doi: 10.1046/j.1471-4159.2000.0742392.x. [DOI] [PubMed] [Google Scholar]
  25. Morgan N. G., Blackmore P. F., Exton J. H. Age-related changes in the control of hepatic cyclic AMP levels by alpha 1- and beta 2-adrenergic receptors in male rats. J Biol Chem. 1983 Apr 25;258(8):5103–5109. [PubMed] [Google Scholar]
  26. Muthusamy N., Leiden J. M. A protein kinase C-, Ras-, and RSK2-dependent signal transduction pathway activates the cAMP-responsive element-binding protein transcription factor following T cell receptor engagement. J Biol Chem. 1998 Aug 28;273(35):22841–22847. doi: 10.1074/jbc.273.35.22841. [DOI] [PubMed] [Google Scholar]
  27. Nedergaard J., Herron D., Jacobsson A., Rehnmark S., Cannon B. Norepinephrine as a morphogen?: its unique interaction with brown adipose tissue. Int J Dev Biol. 1995 Oct;39(5):827–837. [PubMed] [Google Scholar]
  28. Néchad M., Kuusela P., Carneheim C., Björntorp P., Nedergaard J., Cannon B. Development of brown fat cells in monolayer culture. I. Morphological and biochemical distinction from white fat cells in culture. Exp Cell Res. 1983 Nov;149(1):105–118. doi: 10.1016/0014-4827(83)90384-1. [DOI] [PubMed] [Google Scholar]
  29. Pende M., Fisher T. L., Simpson P. B., Russell J. T., Blenis J., Gallo V. Neurotransmitter- and growth factor-induced cAMP response element binding protein phosphorylation in glial cell progenitors: role of calcium ions, protein kinase C, and mitogen-activated protein kinase/ribosomal S6 kinase pathway. J Neurosci. 1997 Feb 15;17(4):1291–1301. doi: 10.1523/JNEUROSCI.17-04-01291.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perez D. M., DeYoung M. B., Graham R. M. Coupling of expressed alpha 1B- and alpha 1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. Mol Pharmacol. 1993 Oct;44(4):784–795. [PubMed] [Google Scholar]
  31. Rabelo R., Camirand A., Silva J. E. 3',5'-cyclic adenosine monophosphate-response sequences of the uncoupling protein gene are sequentially recruited during darglitazone-induced brown adipocyte differentiation. Endocrinology. 1997 Dec;138(12):5325–5332. doi: 10.1210/endo.138.12.5640. [DOI] [PubMed] [Google Scholar]
  32. Reusch J. E., Colton L. A., Klemm D. J. CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol. 2000 Feb;20(3):1008–1020. doi: 10.1128/mcb.20.3.1008-1020.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shaywitz A. J., Greenberg M. E. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–861. doi: 10.1146/annurev.biochem.68.1.821. [DOI] [PubMed] [Google Scholar]
  34. Shimizu Y., Tanishita T., Minokoshi Y., Shimazu T. Activation of mitogen-activated protein kinase by norepinephrine in brown adipocytes from rats. Endocrinology. 1997 Jan;138(1):248–253. doi: 10.1210/endo.138.1.4832. [DOI] [PubMed] [Google Scholar]
  35. Stumpo D. J., Blackshear P. J. Insulin and growth factor effects on c-fos expression in normal and protein kinase C-deficient 3T3-L1 fibroblasts and adipocytes. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9453–9457. doi: 10.1073/pnas.83.24.9453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thonberg H., Zhang S. J., Tvrdik P., Jacobsson A., Nedergaard J. Norepinephrine utilizes alpha 1- and beta-adrenoreceptors synergistically to maximally induce c-fos expression in brown adipocytes. J Biol Chem. 1994 Dec 30;269(52):33179–33186. [PubMed] [Google Scholar]
  37. Wilcke M., Nedergaard J. Alpha 1- and beta-adrenergic regulation of intracellular Ca2+ levels in brown adipocytes. Biochem Biophys Res Commun. 1989 Aug 30;163(1):292–300. doi: 10.1016/0006-291x(89)92134-7. [DOI] [PubMed] [Google Scholar]
  38. Xie H., Rothstein T. L. Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated through surface Ig. J Immunol. 1995 Feb 15;154(4):1717–1723. [PubMed] [Google Scholar]
  39. Xie H., Wang Z., Rothstein T. L. Signaling pathways for antigen receptor-mediated induction of transcription factor CREB in B lymphocytes. Cell Immunol. 1996 May 1;169(2):264–270. doi: 10.1006/cimm.1996.0117. [DOI] [PubMed] [Google Scholar]
  40. Yubero P., Barberá M. J., Alvarez R., Viñas O., Mampel T., Iglesias R., Villarroya F., Giralt M. Dominant negative regulation by c-Jun of transcription of the uncoupling protein-1 gene through a proximal cAMP-regulatory element: a mechanism for repressing basal and norepinephrine-induced expression of the gene before brown adipocyte differentiation. Mol Endocrinol. 1998 Jul;12(7):1023–1037. doi: 10.1210/mend.12.7.0137. [DOI] [PubMed] [Google Scholar]
  41. Yubero P., Viñas O., Iglesias R., Mampel T., Villarroya F., Giralt M. Identification of tissue-specific protein binding domains in the 5'-proximal regulatory region of the rat mitochondrial brown fat uncoupling protein gene. Biochem Biophys Res Commun. 1994 Oct 28;204(2):867–873. doi: 10.1006/bbrc.1994.2540. [DOI] [PubMed] [Google Scholar]
  42. del Mar Gonzalez-Barroso M., Pecqueur C., Gelly C., Sanchis D., Alves-Guerra M. C., Bouillaud F., Ricquier D., Cassard-Doulcier A. M. Transcriptional activation of the human ucp1 gene in a rodent cell line. Synergism of retinoids, isoproterenol, and thiazolidinedione is mediated by a multipartite response element. J Biol Chem. 2000 Oct 13;275(41):31722–31732. doi: 10.1074/jbc.M001678200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES