Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):105–113. doi: 10.1042/bj3640105

Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells.

Agnes A Michalczyk 1, Justin Allen 1, Rachael C Blomeley 1, M Leigh Ackland 1
PMCID: PMC1222551  PMID: 11988082

Abstract

Zinc is an essential trace element required by all living organisms. An adequate supply of zinc is particularly important in the neonatal period. Zinc is a significant component of breast milk, which is transported across the maternal epithelia during lactation. The mechanisms by which zinc becomes a constituent of breast milk have not been elucidated. The function of the zinc transporter ZnT4 in the transport of zinc into milk during lactation was previously demonstrated by studies of a mouse mutant, the 'lethal milk' mouse, where a mutation in the ZnT4 gene decreased the transport of zinc into milk. In the present study, we have investigated the expression of the human orthologue of ZnT4 (hZnT4) in the human breast. We detected hZnT4 mRNA expression in the tissue from the resting and lactating human breast, using reverse-transcriptase PCR. Western-blot analysis using antibodies to peptide sequences of hZnT4 detected a major band of the predicted size of 47 kDa and a minor band of 77 kDa, in extracts from the resting and lactating breast tissues. There was no difference in the hZnT4 expression levels between lactating and resting breasts. The hZnT4 protein was present in the luminal cells of the ducts and alveoli where it had a granular distribution. A cultured human breast epithelial cell line PMC42 was used to investigate the subcellular distribution of hZnT4 and this showed a granular label throughout the cytoplasm, consistent with a vesicular localization. The presence of zinc-containing intracellular vesicles was demonstrated by using the zinc-specific fluorphore Zinquin (ethyl-[2-methyl-8-p-toluenesulphonamido-6-quinolyloxy]acetate). Double labelling indicated that there was no obvious overlap between Zinquin and the hZnT4 protein, suggesting that hZnT4 was not directly involved in the transport of zinc into vesicles. We detected expression of two other members of the hZnT family, hZnT1 and hZnT3, in human breast epithelial cells. We conclude that hZnT4 is constitutively expressed in the human breast and may be one of the several members of the ZnT family involved in the transport of zinc into milk.

Full Text

The Full Text of this article is available as a PDF (309.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackland M. L., Mercer J. F. The murine mutation, lethal milk, results in production of zinc-deficient milk. J Nutr. 1992 Jun;122(6):1214–1218. doi: 10.1093/jn/122.6.1214. [DOI] [PubMed] [Google Scholar]
  2. Ackland M. L., Michalczyk A., Whitehead R. H. PMC42, a novel model for the differentiated human breast. Exp Cell Res. 2001 Feb 1;263(1):14–22. doi: 10.1006/excr.2000.5106. [DOI] [PubMed] [Google Scholar]
  3. Aggett P. J., Harries J. T. Current status of zinc in health and disease states. Arch Dis Child. 1979 Dec;54(12):909–917. doi: 10.1136/adc.54.12.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barilà D., Murgia C., Nobili F., Gaetani S., Perozzi G. Subtractive hybridization cloning of novel genes differentially expressed during intestinal development. Eur J Biochem. 1994 Jul 15;223(2):701–709. doi: 10.1111/j.1432-1033.1994.tb19043.x. [DOI] [PubMed] [Google Scholar]
  5. Baumrucker C. R., Keenan T. W. Membranes of mammary gland. X. Adenosine triphosphate dependent calcium accumulation by Golgi apparatus rich fractions from bovine mammary gland. Exp Cell Res. 1975 Feb;90(2):253–260. doi: 10.1016/0014-4827(75)90314-6. [DOI] [PubMed] [Google Scholar]
  6. Casey C. E., Hambidge K. M., Neville M. C. Studies in human lactation: zinc, copper, manganese and chromium in human milk in the first month of lactation. Am J Clin Nutr. 1985 Jun;41(6):1193–1200. doi: 10.1093/ajcn/41.6.1193. [DOI] [PubMed] [Google Scholar]
  7. Chai F., Truong-Tran A. Q., Ho L. H., Zalewski P. D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol Cell Biol. 1999 Jun;77(3):272–278. doi: 10.1046/j.1440-1711.1999.00825.x. [DOI] [PubMed] [Google Scholar]
  8. Coyle P., Zalewski P. D., Philcox J. C., Forbes I. J., Ward A. D., Lincoln S. F., Mahadevan I., Rofe A. M. Measurement of zinc in hepatocytes by using a fluorescent probe, zinquin: relationship to metallothionein and intracellular zinc. Biochem J. 1994 Nov 1;303(Pt 3):781–786. doi: 10.1042/bj3030781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., Nussberger S., Gollan J. L., Hediger M. A. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature. 1997 Jul 31;388(6641):482–488. doi: 10.1038/41343. [DOI] [PubMed] [Google Scholar]
  10. Huang L., Gitschier J. A novel gene involved in zinc transport is deficient in the lethal milk mouse. Nat Genet. 1997 Nov;17(3):292–297. doi: 10.1038/ng1197-292. [DOI] [PubMed] [Google Scholar]
  11. Lee D. Y., Shay N. F., Cousins R. J. Altered zinc metabolism occurs in murine lethal milk syndrome. J Nutr. 1992 Nov;122(11):2233–2238. doi: 10.1093/jn/122.11.2233. [DOI] [PubMed] [Google Scholar]
  12. Linzell J. L., Peaker M. Mechanism of milk secretion. Physiol Rev. 1971 Jul;51(3):564–597. doi: 10.1152/physrev.1971.51.3.564. [DOI] [PubMed] [Google Scholar]
  13. Liuzzi J. P., Blanchard R. K., Cousins R. J. Differential regulation of zinc transporter 1, 2, and 4 mRNA expression by dietary zinc in rats. J Nutr. 2001 Jan;131(1):46–52. doi: 10.1093/jn/131.1.46. [DOI] [PubMed] [Google Scholar]
  14. Lönnerdal B., Hoffman B., Hurley L. S. Zinc and copper binding proteins in human milk. Am J Clin Nutr. 1982 Dec;36(6):1170–1176. doi: 10.1093/ajcn/36.6.1170. [DOI] [PubMed] [Google Scholar]
  15. McKenzie I. F., Xing P. X. Mucins in breast cancer: recent immunological advances. Cancer Cells. 1990 Mar;2(3):75–78. [PubMed] [Google Scholar]
  16. Michalczyk A. A., Rieger J., Allen K. J., Mercer J. F., Ackland M. L. Defective localization of the Wilson disease protein (ATP7B) in the mammary gland of the toxic milk mouse and the effects of copper supplementation. Biochem J. 2000 Dec 1;352(Pt 2):565–571. [PMC free article] [PubMed] [Google Scholar]
  17. Murgia C., Vespignani I., Cerase J., Nobili F., Perozzi G. Cloning, expression, and vesicular localization of zinc transporter Dri 27/ZnT4 in intestinal tissue and cells. Am J Physiol. 1999 Dec;277(6 Pt 1):G1231–G1239. doi: 10.1152/ajpgi.1999.277.6.G1231. [DOI] [PubMed] [Google Scholar]
  18. Neville M. C., Peaker M. The secretion of calcium and phosphorus into milk. J Physiol. 1979 May;290(2):59–67. doi: 10.1113/jphysiol.1979.sp012759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palmiter R. D., Cole T. B., Findley S. D. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996 Apr 15;15(8):1784–1791. [PMC free article] [PubMed] [Google Scholar]
  20. Palmiter R. D., Cole T. B., Quaife C. J., Findley S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14934–14939. doi: 10.1073/pnas.93.25.14934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palmiter R. D., Findley S. D. Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 1995 Feb 15;14(4):639–649. doi: 10.1002/j.1460-2075.1995.tb07042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Piletz J. E., Ganschow R. E. Zinc deficiency in murine milk underlies expression of the lethal milk (lm) mutation. Science. 1978 Jan 13;199(4325):181–183. doi: 10.1126/science.619449. [DOI] [PubMed] [Google Scholar]
  23. Truong-Tran A. Q., Ruffin R. E., Zalewski P. D. Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. Am J Physiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1172–L1183. doi: 10.1152/ajplung.2000.279.6.L1172. [DOI] [PubMed] [Google Scholar]
  24. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  25. Whitehead R. H., Bertoncello I., Webber L. M., Pedersen J. S. A new human breast carcinoma cell line (PMC42) with stem cell characteristics. I. Morphologic characterization. J Natl Cancer Inst. 1983 Apr;70(4):649–661. [PubMed] [Google Scholar]
  26. Xing P. X., Tjandra J. J., Stacker S. A., Teh J. G., Thompson C. H., McLaughlin P. J., McKenzie I. F. Monoclonal antibodies reactive with mucin expressed in breast cancer. Immunol Cell Biol. 1989 Jun;67(Pt 3):183–195. doi: 10.1038/icb.1989.29. [DOI] [PubMed] [Google Scholar]
  27. Zalewski P. D., Forbes I. J., Betts W. H. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolyloxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J. 1993 Dec 1;296(Pt 2):403–408. doi: 10.1042/bj2960403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zalewski P. D., Millard S. H., Forbes I. J., Kapaniris O., Slavotinek A., Betts W. H., Ward A. D., Lincoln S. F., Mahadevan I. Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cytochem. 1994 Jul;42(7):877–884. doi: 10.1177/42.7.8014471. [DOI] [PubMed] [Google Scholar]
  29. Zhao H., Eide D. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem. 1996 Sep 20;271(38):23203–23210. doi: 10.1074/jbc.271.38.23203. [DOI] [PubMed] [Google Scholar]
  30. Zhao H., Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2454–2458. doi: 10.1073/pnas.93.6.2454. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES