Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):137–144. doi: 10.1042/bj3640137

Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing.

Baisong Mei 1, Ling Zhao 1, Li Chen 1, Hei Sook Sul 1
PMCID: PMC1222555  PMID: 11988086

Abstract

We originally identified preadipocyte factor-1 (Pref-1) as an inhibitor of adipogenesis by the fact that constitutive expression of full-length Pref-1A inhibits differentiation of 3T3-L1 cells into adipocytes. Subsequently, we found that the membrane form of Pref-1 is proteolytically processed at two sites in the extracellular domain, resulting in the larger (50 kDa) and smaller (25 kDa) soluble forms. A specific form(s) of Pref-1, which is active in inhibiting adipocyte differentiation, has not been elucidated. Here, various artificial constructs and alternative-splicing variants of Pref-1 were stably transfected into 3T3-L1 cells, or conditioned media from COS cells transfected with the various forms were added into differentiating 3T3-L1 cells. Judging by Oil Red O staining for lipid accumulation and expression of adipocyte markers, we determined that, unlike the full-length Pref-1A and the constructed large soluble form, the artificial membrane form of Pref-1 lacking the processing site proximal to the membrane was not effective in inhibiting adipogenesis. Furthermore, conditioned media from COS cells transfected with the construct containing only the first three epidermal growth factor repeats, corresponding to the small soluble form, was not effective in inhibiting adipocyte differentiation. Of the four alternative-splicing products, Pref-1A and Pref-1B, which generate both large and small soluble forms, inhibited adipogenesis, whereas Pref-1C and Pref-1D, which lack the processing site proximal to the membrane and therefore generate only the smaller soluble form, did not show any effect. We conclude that only the large soluble form, and not the transmembrane or the small soluble form, of Pref-1 is biologically active and that alternative splicing therefore determines Pref-1 function in adipocyte differentiation.

Full Text

The Full Text of this article is available as a PDF (316.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artavanis-Tsakonas S., Rand M. D., Lake R. J. Notch signaling: cell fate control and signal integration in development. Science. 1999 Apr 30;284(5415):770–776. doi: 10.1126/science.284.5415.770. [DOI] [PubMed] [Google Scholar]
  2. Bruening W., Bardeesy N., Silverman B. L., Cohn R. A., Machin G. A., Aronson A. J., Housman D., Pelletier J. Germline intronic and exonic mutations in the Wilms' tumour gene (WT1) affecting urogenital development. Nat Genet. 1992 May;1(2):144–148. doi: 10.1038/ng0592-144. [DOI] [PubMed] [Google Scholar]
  3. Garcés C., Ruiz-Hidalgo M. J., Bonvini E., Goldstein J., Laborda J. Adipocyte differentiation is modulated by secreted delta-like (dlk) variants and requires the expression of membrane-associated dlk. Differentiation. 1999 Jan;64(2):103–114. doi: 10.1046/j.1432-0436.1999.6420103.x. [DOI] [PubMed] [Google Scholar]
  4. Gregoire F. M., Smas C. M., Sul H. S. Understanding adipocyte differentiation. Physiol Rev. 1998 Jul;78(3):783–809. doi: 10.1152/physrev.1998.78.3.783. [DOI] [PubMed] [Google Scholar]
  5. Gunn T. M., Miller K. A., He L., Hyman R. W., Davis R. W., Azarani A., Schlossman S. F., Duke-Cohan J. S., Barsh G. S. The mouse mahogany locus encodes a transmembrane form of human attractin. Nature. 1999 Mar 11;398(6723):152–156. doi: 10.1038/18217. [DOI] [PubMed] [Google Scholar]
  6. Helman L. J., Thiele C. J., Linehan W. M., Nelkin B. D., Baylin S. B., Israel M. A. Molecular markers of neuroendocrine development and evidence of environmental regulation. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2336–2339. doi: 10.1073/pnas.84.8.2336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iwamoto R., Handa K., Mekada E. Contact-dependent growth inhibition and apoptosis of epidermal growth factor (EGF) receptor-expressing cells by the membrane-anchored form of heparin-binding EGF-like growth factor. J Biol Chem. 1999 Sep 3;274(36):25906–25912. doi: 10.1074/jbc.274.36.25906. [DOI] [PubMed] [Google Scholar]
  8. Jensen C. H., Teisner B., Højrup P., Rasmussen H. B., Madsen O. D., Nielsen B., Skjødt K. Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2. Hum Reprod. 1993 Apr;8(4):635–641. doi: 10.1093/oxfordjournals.humrep.a138110. [DOI] [PubMed] [Google Scholar]
  9. Jiang Z. H., Wu J. Y. Alternative splicing and programmed cell death. Proc Soc Exp Biol Med. 1999 Feb;220(2):64–72. doi: 10.1046/j.1525-1373.1999.d01-11.x. [DOI] [PubMed] [Google Scholar]
  10. Laborda J., Sausville E. A., Hoffman T., Notario V. dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. J Biol Chem. 1993 Feb 25;268(6):3817–3820. [PubMed] [Google Scholar]
  11. Lopez A. J. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu Rev Genet. 1998;32:279–305. doi: 10.1146/annurev.genet.32.1.279. [DOI] [PubMed] [Google Scholar]
  12. Massagué J., Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem. 1993;62:515–541. doi: 10.1146/annurev.bi.62.070193.002503. [DOI] [PubMed] [Google Scholar]
  13. Munoz-Sanjuan I., Smallwood P. M., Nathans J. Isoform diversity among fibroblast growth factor homologous factors is generated by alternative promoter usage and differential splicing. J Biol Chem. 2000 Jan 28;275(4):2589–2597. doi: 10.1074/jbc.275.4.2589. [DOI] [PubMed] [Google Scholar]
  14. Nagle D. L., McGrail S. H., Vitale J., Woolf E. A., Dussault B. J., Jr, DiRocco L., Holmgren L., Montagno J., Bork P., Huszar D. The mahogany protein is a receptor involved in suppression of obesity. Nature. 1999 Mar 11;398(6723):148–152. doi: 10.1038/18210. [DOI] [PubMed] [Google Scholar]
  15. Qi H., Rand M. D., Wu X., Sestan N., Wang W., Rakic P., Xu T., Artavanis-Tsakonas S. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science. 1999 Jan 1;283(5398):91–94. doi: 10.1126/science.283.5398.91. [DOI] [PubMed] [Google Scholar]
  16. Rubin C. S., Hirsch A., Fung C., Rosen O. M. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem. 1978 Oct 25;253(20):7570–7578. [PubMed] [Google Scholar]
  17. Schmidt J. V., Matteson P. G., Jones B. K., Guan X. J., Tilghman S. M. The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev. 2000 Aug 15;14(16):1997–2002. [PMC free article] [PubMed] [Google Scholar]
  18. Shi W., Fan H., Shum L., Derynck R. The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. J Cell Biol. 2000 Feb 7;148(3):591–602. doi: 10.1083/jcb.148.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shimomura I., Hammer R. E., Richardson J. A., Ikemoto S., Bashmakov Y., Goldstein J. L., Brown M. S. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 1998 Oct 15;12(20):3182–3194. doi: 10.1101/gad.12.20.3182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Smas C. M., Chen L., Sul H. S. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol. 1997 Feb;17(2):977–988. doi: 10.1128/mcb.17.2.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smas C. M., Chen L., Zhao L., Latasa M. J., Sul H. S. Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation. J Biol Chem. 1999 Apr 30;274(18):12632–12641. doi: 10.1074/jbc.274.18.12632. [DOI] [PubMed] [Google Scholar]
  22. Smas C. M., Green D., Sul H. S. Structural characterization and alternate splicing of the gene encoding the preadipocyte EGF-like protein pref-1. Biochemistry. 1994 Aug 9;33(31):9257–9265. doi: 10.1021/bi00197a029. [DOI] [PubMed] [Google Scholar]
  23. Smas C. M., Kachinskas D., Liu C. M., Xie X., Dircks L. K., Sul H. S. Transcriptional control of the pref-1 gene in 3T3-L1 adipocyte differentiation. Sequence requirement for differentiation-dependent suppression. J Biol Chem. 1998 Nov 27;273(48):31751–31758. doi: 10.1074/jbc.273.48.31751. [DOI] [PubMed] [Google Scholar]
  24. Smas C. M., Sul H. S. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell. 1993 May 21;73(4):725–734. doi: 10.1016/0092-8674(93)90252-l. [DOI] [PubMed] [Google Scholar]
  25. Sul H. S., Smas C., Mei B., Zhou L. Function of pref-1 as an inhibitor of adipocyte differentiation. Int J Obes Relat Metab Disord. 2000 Nov;24 (Suppl 4):S15–S19. doi: 10.1038/sj.ijo.0801494. [DOI] [PubMed] [Google Scholar]
  26. Wylie A. A., Murphy S. K., Orton T. C., Jirtle R. L. Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res. 2000 Nov;10(11):1711–1718. doi: 10.1101/gr.161600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yang H., Jiang D., Li W., Liang J., Gentry L. E., Brattain M. G. Defective cleavage of membrane bound TGFalpha leads to enhanced activation of the EGF receptor in malignant cells. Oncogene. 2000 Apr 6;19(15):1901–1914. doi: 10.1038/sj.onc.1203513. [DOI] [PubMed] [Google Scholar]
  28. Zhou Y. T., Wang Z. W., Higa M., Newgard C. B., Unger R. H. Reversing adipocyte differentiation: implications for treatment of obesity. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2391–2395. doi: 10.1073/pnas.96.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Melker A. A., Sonnenberg A. Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioessays. 1999 Jun;21(6):499–509. doi: 10.1002/(SICI)1521-1878(199906)21:6<499::AID-BIES6>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES