Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):191–200. doi: 10.1042/bj3640191

Gastric MUC5AC and MUC6 are large oligomeric mucins that differ in size, glycosylation and tissue distribution.

Henrik Nordman 1, Julia R Davies 1, Gert Lindell 1, Carme de Bolós 1, Francisco Real 1, Ingemar Carlstedt 1
PMCID: PMC1222561  PMID: 11988092

Abstract

Gastric MUC5AC and MUC6 mucins were studied using polyclonal antibodies. Immunohistochemistry showed MUC5AC to originate from the surface epithelium, whereas MUC6 was produced by the glands. Mucins from the surface epithelium or glands of corpus and antrum were purified using CsCl/4M guanidinium chloride density-gradient centrifugation. MUC5AC appeared as two distinct populations at 1.4 and 1.3 g/ml, whereas MUC6, which was enriched in the gland tissue, appeared at 1.45 g/ml. Reactivity with antibodies against the Le(b) structure (where Le represents the Lewis antigen) followed the MUC5AC distribution, whereas antibodies against the Le(y) structure and reactivity with the GlcNAc-selective Solanum tuberosum lectin coincided with MUC6, suggesting that the two mucins are glycosylated differently. Rate-zonal centrifugation of whole mucins and reduced subunits showed that both gastric MUC5AC and MUC6 are oligomeric glycoproteins composed of disulphide-bond linked subunits and that oligomeric MUC5AC was apparently smaller than MUC6. A heterogeneous population of 'low-density' MUC5AC mucins, which were smaller than the 'high-density' ones both before and after reduction, reacted with an antibody against a variable number tandem repeat sequence within MUC5AC, suggesting that they represent precursor forms of this mucin. Following ion-exchange HPLC, both MUC5AC and MUC6 appeared as several distinct populations, probably corresponding to 'glycoforms' of the mucins, the most highly charged of which were found in the gland tissue.

Full Text

The Full Text of this article is available as a PDF (355.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A., Flemström G., Garner A., Kivilaakso E. Gastroduodenal mucosal protection. Physiol Rev. 1993 Oct;73(4):823–857. doi: 10.1152/physrev.1993.73.4.823. [DOI] [PubMed] [Google Scholar]
  2. Asker N., Baeckström D., Axelsson M. A., Carlstedt I., Hansson G. C. The human MUC2 mucin apoprotein appears to dimerize before O-glycosylation and shares epitopes with the 'insoluble' mucin of rat small intestine. Biochem J. 1995 Jun 15;308(Pt 3):873–880. doi: 10.1042/bj3080873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bara J., Chastre E., Mahiou J., Singh R. L., Forgue-Lafitte M. E., Hollande E., Godeau F. Gastric M1 mucin, an early oncofetal marker of colon carcinogenesis, is encoded by the MUC5AC gene. Int J Cancer. 1998 Mar 2;75(5):767–773. doi: 10.1002/(sici)1097-0215(19980302)75:5<767::aid-ijc17>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  4. Carlstedt I., Herrmann A., Hovenberg H., Lindell G., Nordman H., Wickström C., Davies J. R. 'Soluble' and 'insoluble' mucins--identification of distinct populations. Biochem Soc Trans. 1995 Nov;23(4):845–851. doi: 10.1042/bst0230845. [DOI] [PubMed] [Google Scholar]
  5. Carlstedt I., Lindgren H., Sheehan J. K. The macromolecular structure of human cervical-mucus glycoproteins. Studies on fragments obtained after reduction of disulphide bridges and after subsequent trypsin digestion. Biochem J. 1983 Aug 1;213(2):427–435. doi: 10.1042/bj2130427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies J. R., Hovenberg H. W., Lindén C. J., Howard R., Richardson P. S., Sheehan J. K., Carlstedt I. Mucins in airway secretions from healthy and chronic bronchitic subjects. Biochem J. 1996 Jan 15;313(Pt 2):431–439. doi: 10.1042/bj3130431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Bolós C., Garrido M., Real F. X. MUC6 apomucin shows a distinct normal tissue distribution that correlates with Lewis antigen expression in the human stomach. Gastroenterology. 1995 Sep;109(3):723–734. doi: 10.1016/0016-5085(95)90379-8. [DOI] [PubMed] [Google Scholar]
  8. Devine P. L. A sensitive microplate assay for glycoproteins that utilizes an immunological digoxigenin-based detection system. Biotechniques. 1992 Feb;12(2):160–162. [PubMed] [Google Scholar]
  9. Escande F., Aubert J. P., Porchet N., Buisine M. P. Human mucin gene MUC5AC: organization of its 5'-region and central repetitive region. Biochem J. 2001 Sep 15;358(Pt 3):763–772. doi: 10.1042/0264-6021:3580763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerken T. A., Butenhof K. J., Shogren R. Effects of glycosylation on the conformation and dynamics of O-linked glycoproteins: carbon-13 NMR studies of ovine submaxillary mucin. Biochemistry. 1989 Jun 27;28(13):5536–5543. doi: 10.1021/bi00439a030. [DOI] [PubMed] [Google Scholar]
  11. Herrmann A., Davies J. R., Lindell G., Mårtensson S., Packer N. H., Swallow D. M., Carlstedt I. Studies on the "insoluble" glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage. J Biol Chem. 1999 May 28;274(22):15828–15836. doi: 10.1074/jbc.274.22.15828. [DOI] [PubMed] [Google Scholar]
  12. Ho S. B., Roberton A. M., Shekels L. L., Lyftogt C. T., Niehans G. A., Toribara N. W. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology. 1995 Sep;109(3):735–747. doi: 10.1016/0016-5085(95)90380-1. [DOI] [PubMed] [Google Scholar]
  13. Ho S. B., Shekels L. L., Toribara N. W., Kim Y. S., Lyftogt C., Cherwitz D. L., Niehans G. A. Mucin gene expression in normal, preneoplastic, and neoplastic human gastric epithelium. Cancer Res. 1995 Jun 15;55(12):2681–2690. [PubMed] [Google Scholar]
  14. Hovenberg H. W., Davies J. R., Carlstedt I. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J. 1996 Aug 15;318(Pt 1):319–324. doi: 10.1042/bj3180319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hovenberg H. W., Davies J. R., Herrmann A., Lindén C. J., Carlstedt I. MUC5AC, but not MUC2, is a prominent mucin in respiratory secretions. Glycoconj J. 1996 Oct;13(5):839–847. doi: 10.1007/BF00702348. [DOI] [PubMed] [Google Scholar]
  16. Hsu S. M., Raine L. Versatility of biotin-labeled lectins and avidin-biotin-peroxidase complex for localization of carbohydrate in tissue sections. J Histochem Cytochem. 1982 Feb;30(2):157–161. doi: 10.1177/30.2.7037937. [DOI] [PubMed] [Google Scholar]
  17. Jourdian G. W., Dean L., Roseman S. The sialic acids. XI. A periodate-resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J Biol Chem. 1971 Jan 25;246(2):430–435. [PubMed] [Google Scholar]
  18. López-Ferrer A., de Bolós C., Barranco C., Garrido M., Isern J., Carlstedt I., Reis C. A., Torrado J., Real F. X. Role of fucosyltransferases in the association between apomucin and Lewis antigen expression in normal and malignant gastric epithelium. Gut. 2000 Sep;47(3):349–356. doi: 10.1136/gut.47.3.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mollicone R., Bara J., Le Pendu J., Oriol R. Immunohistologic pattern of type 1 (Lea, Leb) and type 2 (X, Y, H) blood group-related antigens in the human pyloric and duodenal mucosae. Lab Invest. 1985 Aug;53(2):219–227. [PubMed] [Google Scholar]
  20. Nordman H., Borén T., Davies J. R., Engstrand L., Carlstedt I. pH-dependent binding of Helicobacter pylori to pig gastric mucins. FEMS Immunol Med Microbiol. 1999 Jun;24(2):175–181. doi: 10.1111/j.1574-695X.1999.tb01279.x. [DOI] [PubMed] [Google Scholar]
  21. Nordman H., Davies J. R., Carlstedt I. Mucus glycoproteins from pig gastric mucosa: different mucins are produced by the surface epithelium and the glands. Biochem J. 1998 May 1;331(Pt 3):687–694. doi: 10.1042/bj3310687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nordman H., Davies J. R., Herrmann A., Karlsson N. G., Hansson G. C., Carlstedt I. Mucus glycoproteins from pig gastric mucosa: identification ofdifferent mucin populations from the surface epithelium. Biochem J. 1997 Sep 15;326(Pt 3):903–910. doi: 10.1042/bj3260903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ota H., Katsuyama T. Alternating laminated array of two types of mucin in the human gastric surface mucous layer. Histochem J. 1992 Feb;24(2):86–92. doi: 10.1007/BF01082444. [DOI] [PubMed] [Google Scholar]
  24. Ota H., Katsuyama T., Ishii K., Nakayama J., Shiozawa T., Tsukahara Y. A dual staining method for identifying mucins of different gastric epithelial mucous cells. Histochem J. 1991 Jan;23(1):22–28. doi: 10.1007/BF01886504. [DOI] [PubMed] [Google Scholar]
  25. Reis C. A., David L., Correa P., Carneiro F., de Bolós C., Garcia E., Mandel U., Clausen H., Sobrinho-Simões M. Intestinal metaplasia of human stomach displays distinct patterns of mucin (MUC1, MUC2, MUC5AC, and MUC6) expression. Cancer Res. 1999 Mar 1;59(5):1003–1007. [PubMed] [Google Scholar]
  26. Reis C. A., David L., Nielsen P. A., Clausen H., Mirgorodskaya K., Roepstorff P., Sobrinho-Simões M. Immunohistochemical study of MUC5AC expression in human gastric carcinomas using a novel monoclonal antibody. Int J Cancer. 1997 Feb 20;74(1):112–121. doi: 10.1002/(sici)1097-0215(19970220)74:1<112::aid-ijc19>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  27. Sakamoto J., Furukawa K., Cordon-Cardo C., Yin B. W., Rettig W. J., Oettgen H. F., Old L. J., Lloyd K. O. Expression of Lewisa, Lewisb, X, and Y blood group antigens in human colonic tumors and normal tissue and in human tumor-derived cell lines. Cancer Res. 1986 Mar;46(3):1553–1561. [PubMed] [Google Scholar]
  28. Sheehan J. K., Carlstedt I. Size heterogeneity of human cervical mucus glycoproteins. Studies performed with rate-zonal centrifugation and laser light-scattering. Biochem J. 1987 Aug 1;245(3):757–762. doi: 10.1042/bj2450757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sheehan J. K., Oates K., Carlstedt I. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem J. 1986 Oct 1;239(1):147–153. doi: 10.1042/bj2390147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Snary D., Allen A., Pain R. H. Structural studies on gastric mucoproteins: lowering of molecular weight after reduction with 2-mercaptoethanol. Biochem Biophys Res Commun. 1970 Aug 24;40(4):844–851. doi: 10.1016/0006-291x(70)90980-0. [DOI] [PubMed] [Google Scholar]
  31. Thornton D. J., Howard M., Khan N., Sheehan J. K. Identification of two glycoforms of the MUC5B mucin in human respiratory mucus. Evidence for a cysteine-rich sequence repeated within the molecule. J Biol Chem. 1997 Apr 4;272(14):9561–9566. doi: 10.1074/jbc.272.14.9561. [DOI] [PubMed] [Google Scholar]
  32. Thornton D. J., Khan N., Mehrotra R., Howard M., Veerman E., Packer N. H., Sheehan J. K. Salivary mucin MG1 is comprised almost entirely of different glycosylated forms of the MUC5B gene product. Glycobiology. 1999 Mar;9(3):293–302. doi: 10.1093/glycob/9.3.293. [DOI] [PubMed] [Google Scholar]
  33. Toribara N. W., Ho S. B., Gum E., Gum J. R., Jr, Lau P., Kim Y. S. The carboxyl-terminal sequence of the human secretory mucin, MUC6. Analysis Of the primary amino acid sequence. J Biol Chem. 1997 Jun 27;272(26):16398–16403. doi: 10.1074/jbc.272.26.16398. [DOI] [PubMed] [Google Scholar]
  34. Wickström C., Davies J. R., Eriksen G. V., Veerman E. C., Carlstedt I. MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem J. 1998 Sep 15;334(Pt 3):685–693. doi: 10.1042/bj3340685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Klinken B. J., Einerhand A. W., Büller H. A., Dekker J. The oligomerization of a family of four genetically clustered human gastrointestinal mucins. Glycobiology. 1998 Jan;8(1):67–75. doi: 10.1093/glycob/8.1.67. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES