Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 May 15;364(Pt 1):211–218. doi: 10.1042/bj3640211

Nitric oxide inhibits the shedding of the glycosylphosphatidylinositol-anchored dipeptidase from porcine renal proximal tubules.

Sung Wook Park 1, Hyun Joong Yoon 1, Hwanghee Blaise Lee 1, Nigel M Hooper 1, Haeng Soon Park 1
PMCID: PMC1222563  PMID: 11988094

Abstract

NO is related to the pathological condition acute renal failure, in which we previously observed that the level of soluble dipeptidase in urine was decreased. In this study the role of NO in the shedding of the glycosylphosphatidylinositol (GPI)-anchored form of renal dipeptidase (RDPase) was examined. The NO donors sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine rapidly inhibited the release of RDPase from porcine kidney proximal tubules. The substrate of NO synthase, l-Arg, also inhibited the release of RDPase, and this effect was reversed by the NO synthase inhibitor N(omega)-nitro-l-arginine methyl ester. Western-blot analyses using antibodies raised against porcine RDPase and the inositol-1,2-cyclic monophosphate moiety formed on phospholipase C cleavage of the GPI anchor demonstrated that SNP mediated its inhibitory effect on the release of RDPase via a GPI-specific phospholipase C (GPI-PLC). Peroxynitrite scavengers (deferoxamine and superoxide dismutase) or reducing agent (dithiothreitol) did not affect SNP's inhibition of the release of RDPase. Exposure to the G-protein activator AlF(-)(4) mimicked the l-Arg effect in the presence of a low concentration of l-Arg, and the effect was completely reversed by U73122, an intracellular phosphatidylinositol-specific PLC (PI-PLC) inhibitor. These results suggest a signal-transduction pathway involving NO, which is produced by NO synthase(s) following activation of a G-protein-coupled PI-PLC, resulting in inhibition of the GPI-PLC that cleaves and releases RDPase. Therefore, this indicates a role for NO as an inhibitory regulator of the shedding of the GPI-anchored RDPase in acute renal failure.

Full Text

The Full Text of this article is available as a PDF (239.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broomfield S. J., Hooper N. M. Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase. Biochim Biophys Acta. 1993 Feb 9;1145(2):212–218. doi: 10.1016/0005-2736(93)90291-7. [DOI] [PubMed] [Google Scholar]
  3. Campbell B. J., Forrester L. J., Zahler W. L., Burks M. Beta-lactamase activity of purified and partially characterized human renal dipeptidase. J Biol Chem. 1984 Dec 10;259(23):14586–14590. [PubMed] [Google Scholar]
  4. Chen C. C., Wang J. K., Lin S. B. Antisense oligonucleotides targeting protein kinase C-alpha, -beta I, or -delta but not -eta inhibit lipopolysaccharide-induced nitric oxide synthase expression in RAW 264.7 macrophages: involvement of a nuclear factor kappa B-dependent mechanism. J Immunol. 1998 Dec 1;161(11):6206–6214. [PubMed] [Google Scholar]
  5. Choi K., Park S. W., Lee K. J., Lee H. B., Han H. J., Park S. K., Park H. S. Grass carp (Ctenopharyngodon idellus) bile may inhibit the release of renal dipeptidase from the proximal tubules by nitric oxide generation. Kidney Blood Press Res. 2000;23(2):113–118. doi: 10.1159/000025962. [DOI] [PubMed] [Google Scholar]
  6. Ding M., St Pierre B. A., Parkinson J. F., Medberry P., Wong J. L., Rogers N. E., Ignarro L. J., Merrill J. E. Inducible nitric-oxide synthase and nitric oxide production in human fetal astrocytes and microglia. A kinetic analysis. J Biol Chem. 1997 Apr 25;272(17):11327–11335. doi: 10.1074/jbc.272.17.11327. [DOI] [PubMed] [Google Scholar]
  7. Fricker S. P., Slade E., Powell N. A. Macrophage-derived superoxide is not required for nitric oxide mediated tumour cell killing by RAW 264 cells. Anticancer Res. 1999 Jan-Feb;19(1A):553–556. [PubMed] [Google Scholar]
  8. Fukumura Y., Kera Y., Oshitani S., Ushijima Y., Kobayashi I., Liu Z., Watanabe T., Yamada R., Kikuchi H., Kawazu S. Behaviour of urinary dipeptidase in patients with chronic renal failure. Ann Clin Biochem. 1999 Mar;36(Pt 2):221–225. doi: 10.1177/000456329903600215. [DOI] [PubMed] [Google Scholar]
  9. Glynne PA, Evans TJ. Inflammatory cytokines induce apoptotic and necrotic cell shedding from human proximal tubular epithelial cell monolayers . Kidney Int. 1999 Jun;55(6):2573–2597. doi: 10.1046/j.1523-1755.2002.t01-1-00456.x. [DOI] [PubMed] [Google Scholar]
  10. Hamad A. M., Range S., Holland E., Knox A. J. Regulation of cGMP by soluble and particulate guanylyl cyclases in cultured human airway smooth muscle. Am J Physiol. 1997 Oct;273(4 Pt 1):L807–L813. doi: 10.1152/ajplung.1997.273.4.L807. [DOI] [PubMed] [Google Scholar]
  11. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  12. Ito Y., Watanabe Y., Hirano K., Sugiura M., Sawaki S., Ogiso T. A fluorometric method for dipeptidase activity measurement in urine, using L-alanyl-L-alanine as substrate. J Biochem. 1984 Jul;96(1):1–8. doi: 10.1093/oxfordjournals.jbchem.a134801. [DOI] [PubMed] [Google Scholar]
  13. Jyothi M. D., Khar A. Induction of nitric oxide production by natural killer cells: its role in tumor cell death. Nitric Oxide. 1999 Oct;3(5):409–418. doi: 10.1006/niox.1999.0243. [DOI] [PubMed] [Google Scholar]
  14. Kim Y. M., Talanian R. V., Billiar T. R. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem. 1997 Dec 5;272(49):31138–31148. doi: 10.1074/jbc.272.49.31138. [DOI] [PubMed] [Google Scholar]
  15. Knotek M., Esson M., Gengaro P., Edelstein C. L., Schrier R. W. Desensitization of soluble guanylate cyclase in renal cortex during endotoxemia in mice. J Am Soc Nephrol. 2000 Nov;11(11):2133–2137. doi: 10.1681/ASN.V11112133. [DOI] [PubMed] [Google Scholar]
  16. Koesling D. Studying the structure and regulation of soluble guanylyl cyclase. Methods. 1999 Dec;19(4):485–493. doi: 10.1006/meth.1999.0891. [DOI] [PubMed] [Google Scholar]
  17. Kwon Y. G., Min J. K., Kim K. M., Lee D. J., Billiar T. R., Kim Y. M. Sphingosine 1-phosphate protects human umbilical vein endothelial cells from serum-deprived apoptosis by nitric oxide production. J Biol Chem. 2000 Dec 28;276(14):10627–10633. doi: 10.1074/jbc.M011449200. [DOI] [PubMed] [Google Scholar]
  18. Lamas S., Marsden P. A., Li G. K., Tempst P., Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6348–6352. doi: 10.1073/pnas.89.14.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee S. H., Kang B. Y., We J. S., Park S. K., Park H. S. Differentiation of acute renal failure and chronic renal failure by 2-dimensional analysis of urinary dipeptidase versus serum creatinine. Ren Fail. 1999 Mar;21(2):169–176. doi: 10.3109/08860229909066981. [DOI] [PubMed] [Google Scholar]
  20. Littlewood G. M., Hooper N. M., Turner A. J. Ectoenzymes of the kidney microvillar membrane. Affinity purification, characterization and localization of the phospholipase C-solubilized form of renal dipeptidase. Biochem J. 1989 Jan 15;257(2):361–367. doi: 10.1042/bj2570361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marshall H. E., Stamler J. S. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry. 2001 Feb 13;40(6):1688–1693. doi: 10.1021/bi002239y. [DOI] [PubMed] [Google Scholar]
  22. Martin E., Davis K., Bian K., Lee Y. C., Murad F. Cellular signaling with nitric oxide and cyclic guanosine monophosphate. Semin Perinatol. 2000 Feb;24(1):2–6. doi: 10.1016/s0146-0005(00)80045-2. [DOI] [PubMed] [Google Scholar]
  23. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  24. Movahedi S., Hooper N. M. Insulin stimulates the release of the glycosyl phosphatidylinositol-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C. Biochem J. 1997 Sep 1;326(Pt 2):531–537. doi: 10.1042/bj3260531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Movahedi S., Pang S., Hooper N. M. Insulin stimulates the release of a subset of GPI-anchored proteins in a G-protein independent manner. Mol Membr Biol. 2000 Jan-Mar;17(1):41–45. doi: 10.1080/096876800294470. [DOI] [PubMed] [Google Scholar]
  26. Narula P., Xu J., Kazzaz J. A., Robbins C. G., Davis J. M., Horowitz S. Synergistic cytotoxicity from nitric oxide and hyperoxia in cultured lung cells. Am J Physiol. 1998 Mar;274(3 Pt 1):L411–L416. doi: 10.1152/ajplung.1998.274.3.L411. [DOI] [PubMed] [Google Scholar]
  27. Olsson L. E., Wheeler M. A., Sessa W. C., Weiss R. M. Bladder instillation and intraperitoneal injection of Escherichia coli lipopolysaccharide up-regulate cytokines and iNOS in rat urinary bladder. J Pharmacol Exp Ther. 1998 Mar;284(3):1203–1208. [PubMed] [Google Scholar]
  28. Park H. S., Huh S. H., Kim M. S., Lee S. H., Choi E. J. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14382–14387. doi: 10.1073/pnas.97.26.14382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Park S. K., Kim D. G., Kang S. K., Han J. S., Kim S. G., Lee J. S., Kim M. C. Toxic acute renal failure and hepatitis after ingestion of raw carp bile. Nephron. 1990;56(2):188–193. doi: 10.1159/000186131. [DOI] [PubMed] [Google Scholar]
  30. Park S. W., Choi K., Kim I. C., Lee H. H., Hooper N. M., Park H. S. Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro. Biochem J. 2001 Jan 15;353(Pt 2):339–344. doi: 10.1042/0264-6021:3530339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Park Sung Wook, Choi Kyong, Lee Hwanghee Blaise, Park Sung Kwang, Turner Anthony J., Hooper Nigel M., Park Haeng Soon. Glycosyl-phosphatidylinositol (GPI)-anchored renal dipeptidase is released by a phospholipase C in vivo. Kidney Blood Press Res. 2002;25(1):7–12. doi: 10.1159/000049429. [DOI] [PubMed] [Google Scholar]
  32. Paul E., Leblond F. A., LeBel D. In resting conditions, the pancreatic granule membrane protein GP-2 is secreted by cleavage of its glycosylphosphatidylinositol anchor. Biochem J. 1991 Aug 1;277(Pt 3):879–881. doi: 10.1042/bj2770879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Reiter C. D., Teng R. J., Beckman J. S. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. J Biol Chem. 2000 Oct 20;275(42):32460–32466. doi: 10.1074/jbc.M910433199. [DOI] [PubMed] [Google Scholar]
  34. Rivas-Cabañero L., Montero A., López-Novoa J. M. Increased glomerular nitric oxide synthesis in gentamicin-induced renal failure. Eur J Pharmacol. 1994 Jan 3;270(1):119–121. doi: 10.1016/0926-6917(94)90088-4. [DOI] [PubMed] [Google Scholar]
  35. Sands W. A., Clark J. S., Liew F. Y. The role of a phosphatidylcholine-specific phospholipase C in the production of diacylglycerol for nitric oxide synthesis in macrophages activated by IFN-gamma and LPS. Biochem Biophys Res Commun. 1994 Mar 15;199(2):461–466. doi: 10.1006/bbrc.1994.1251. [DOI] [PubMed] [Google Scholar]
  36. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  37. Smith S. D., Wheeler M. A., Foster H. E., Jr, Weiss R. M. Urinary nitric oxide synthase activity and cyclic GMP levels are decreased with interstitial cystitis and increased with urinary tract infections. J Urol. 1996 Apr;155(4):1432–1435. [PubMed] [Google Scholar]
  38. Smith S. D., Wheeler M. A., Lorber M. I., Weiss R. M. Temporal changes of cytokines and nitric oxide products in urine from renal transplant patients. Kidney Int. 2000 Aug;58(2):829–837. doi: 10.1046/j.1523-1755.2000.00232.x. [DOI] [PubMed] [Google Scholar]
  39. Stuehr D. J., Cho H. J., Kwon N. S., Weise M. F., Nathan C. F. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7773–7777. doi: 10.1073/pnas.88.17.7773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Surks H. K., Mochizuki N., Kasai Y., Georgescu S. P., Tang K. M., Ito M., Lincoln T. M., Mendelsohn M. E. Regulation of myosin phosphatase by a specific interaction with cGMP- dependent protein kinase Ialpha. Science. 1999 Nov 19;286(5444):1583–1587. doi: 10.1126/science.286.5444.1583. [DOI] [PubMed] [Google Scholar]
  41. Traylor L. A., Mayeux P. R. Nitric oxide generation mediates lipid A-induced oxidant injury in renal proximal tubules. Arch Biochem Biophys. 1997 Feb 15;338(2):129–135. doi: 10.1006/abbi.1996.9840. [DOI] [PubMed] [Google Scholar]
  42. Traylor L. A., Proksch J. W., Beanum V. C., Mayeux P. R. Nitric oxide generation by renal proximal tubules: role of nitric oxide in the cytotoxicity of lipid A. J Pharmacol Exp Ther. 1996 Oct;279(1):91–96. [PubMed] [Google Scholar]
  43. We J. S., Kang B. Y., Lee J. C., Lee H. B., Park H. S. Identification of urinary dipeptidase as the released form of renal dipeptidase. Kidney Blood Press Res. 1997;20(6):411–415. doi: 10.1159/000174264. [DOI] [PubMed] [Google Scholar]
  44. Wu H. M., Yuan Y., Zawieja D. C., Tinsley J., Granger H. J. Role of phospholipase C, protein kinase C, and calcium in VEGF-induced venular hyperpermeability. Am J Physiol. 1999 Feb;276(2 Pt 2):H535–H542. doi: 10.1152/ajpheart.1999.276.2.H535. [DOI] [PubMed] [Google Scholar]
  45. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  46. Xu L., Eu J. P., Meissner G., Stamler J. S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998 Jan 9;279(5348):234–237. doi: 10.1126/science.279.5348.234. [DOI] [PubMed] [Google Scholar]
  47. Yip L. L., Chow C. L., Yung K. H., Chu K. W. Toxic material from the gallbladder of the grass carp (Ctenopharyngodon idellus). Toxicon. 1981;19(4):567–569. doi: 10.1016/0041-0101(81)90016-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES