Abstract
The secretory vesicle cysteine string proteins (CSPs) are members of the DnaJ family of chaperones, and function at late stages of Ca2+-regulated exocytosis by an unknown mechanism. To determine novel binding partners of CSPs, we employed a pull-down strategy from purified rat brain membrane or cytosolic proteins using recombinant hexahistidine-tagged (His(6)-)CSP. Western blotting of the CSP-binding proteins identified synaptotagmin I to be a putative binding partner. Furthermore, pull-down assays using cAMP-dependent protein kinase (PKA)-phosphorylated CSP recovered significantly less synaptotagmin. Complexes containing CSP and synaptotagmin were immunoprecipitated from rat brain membranes, further suggesting that these proteins interact in vivo. Binding assays in vitro using recombinant proteins confirmed a direct interaction between the two proteins and demonstrated that the PKA-phosphorylated form of CSP binds synaptotagmin with approximately an order of magnitude lower affinity than the non-phosphorylated form. Genetic studies have implicated each of these proteins in the Ca2+-dependency of exocytosis and, since CSP does not bind Ca2+, this novel interaction might explain the Ca2+-dependent actions of CSP.
Full Text
The Full Text of this article is available as a PDF (144.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braun J. E., Wilbanks S. M., Scheller R. H. The cysteine string secretory vesicle protein activates Hsc70 ATPase. J Biol Chem. 1996 Oct 18;271(42):25989–25993. doi: 10.1074/jbc.271.42.25989. [DOI] [PubMed] [Google Scholar]
- Bronk P., Wenniger J. J., Dawson-Scully K., Guo X., Hong S., Atwood H. L., Zinsmaier K. E. Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron. 2001 May;30(2):475–488. doi: 10.1016/s0896-6273(01)00292-6. [DOI] [PubMed] [Google Scholar]
- Chamberlain L. H., Burgoyne R. D. Activation of the ATPase activity of heat-shock proteins Hsc70/Hsp70 by cysteine-string protein. Biochem J. 1997 Mar 15;322(Pt 3):853–858. doi: 10.1042/bj3220853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamberlain L. H., Burgoyne R. D. Cysteine-string protein: the chaperone at the synapse. J Neurochem. 2000 May;74(5):1781–1789. doi: 10.1046/j.1471-4159.2000.0741781.x. [DOI] [PubMed] [Google Scholar]
- Chamberlain L. H., Burgoyne R. D. The cysteine-string domain of the secretory vesicle cysteine-string protein is required for membrane targeting. Biochem J. 1998 Oct 15;335(Pt 2):205–209. doi: 10.1042/bj3350205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chamberlain L. H., Burgoyne R. D. The molecular chaperone function of the secretory vesicle cysteine string proteins. J Biol Chem. 1997 Dec 12;272(50):31420–31426. doi: 10.1074/jbc.272.50.31420. [DOI] [PubMed] [Google Scholar]
- Chamberlain L. H., Graham M. E., Kane S., Jackson J. L., Maier V. H., Burgoyne R. D., Gould G. W. The synaptic vesicle protein, cysteine-string protein, is associated with the plasma membrane in 3T3-L1 adipocytes and interacts with syntaxin 4. J Cell Sci. 2001 Jan;114(Pt 2):445–455. doi: 10.1242/jcs.114.2.445. [DOI] [PubMed] [Google Scholar]
- Chamberlain L. H., Henry J., Burgoyne R. D. Cysteine string proteins are associated with chromaffin granules. J Biol Chem. 1996 Aug 9;271(32):19514–19517. doi: 10.1074/jbc.271.32.19514. [DOI] [PubMed] [Google Scholar]
- Chapman E. R., An S., Edwardson J. M., Jahn R. A novel function for the second C2 domain of synaptotagmin. Ca2+-triggered dimerization. J Biol Chem. 1996 Mar 8;271(10):5844–5849. doi: 10.1074/jbc.271.10.5844. [DOI] [PubMed] [Google Scholar]
- Chapman E. R., Hanson P. I., An S., Jahn R. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem. 1995 Oct 6;270(40):23667–23671. doi: 10.1074/jbc.270.40.23667. [DOI] [PubMed] [Google Scholar]
- Chapman E. R., Jahn R. Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J Biol Chem. 1994 Feb 25;269(8):5735–5741. [PubMed] [Google Scholar]
- Davis A. F., Bai J., Fasshauer D., Wolowick M. J., Lewis J. L., Chapman E. R. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron. 1999 Oct;24(2):363–376. doi: 10.1016/s0896-6273(00)80850-8. [DOI] [PubMed] [Google Scholar]
- Dawson-Scully K., Bronk P., Atwood H. L., Zinsmaier K. E. Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis in Drosophila. J Neurosci. 2000 Aug 15;20(16):6039–6047. doi: 10.1523/JNEUROSCI.20-16-06039.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans G. J., Pocock J. M. Modulation of neurotransmitter release by dihydropyridine-sensitive calcium channels involves tyrosine phosphorylation. Eur J Neurosci. 1999 Jan;11(1):279–292. doi: 10.1046/j.1460-9568.1999.00427.x. [DOI] [PubMed] [Google Scholar]
- Evans G. J., Wilkinson M. C., Graham M. E., Turner K. M., Chamberlain L. H., Burgoyne R. D., Morgan A. Phosphorylation of cysteine string protein by protein kinase A. Implications for the modulation of exocytosis. J Biol Chem. 2001 Oct 16;276(51):47877–47885. doi: 10.1074/jbc.M108186200. [DOI] [PubMed] [Google Scholar]
- Fernández-Chacón R., Königstorfer A., Gerber S. H., García J., Matos M. F., Stevens C. F., Brose N., Rizo J., Rosenmund C., Südhof T. C. Synaptotagmin I functions as a calcium regulator of release probability. Nature. 2001 Mar 1;410(6824):41–49. doi: 10.1038/35065004. [DOI] [PubMed] [Google Scholar]
- Geppert M., Goda Y., Hammer R. E., Li C., Rosahl T. W., Stevens C. F., Südhof T. C. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 1994 Nov 18;79(4):717–727. doi: 10.1016/0092-8674(94)90556-8. [DOI] [PubMed] [Google Scholar]
- Graham M. E., Burgoyne R. D. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells. J Neurosci. 2000 Feb 15;20(4):1281–1289. doi: 10.1523/JNEUROSCI.20-04-01281.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gundersen C. B., Umbach J. A. Suppression cloning of the cDNA for a candidate subunit of a presynaptic calcium channel. Neuron. 1992 Sep;9(3):527–537. doi: 10.1016/0896-6273(92)90190-o. [DOI] [PubMed] [Google Scholar]
- Jorgensen E. M., Hartwieg E., Schuske K., Nonet M. L., Jin Y., Horvitz H. R. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature. 1995 Nov 9;378(6553):196–199. doi: 10.1038/378196a0. [DOI] [PubMed] [Google Scholar]
- Leveque C., Pupier S., Marqueze B., Geslin L., Kataoka M., Takahashi M., De Waard M., Seagar M. Interaction of cysteine string proteins with the alpha1A subunit of the P/Q-type calcium channel. J Biol Chem. 1998 May 29;273(22):13488–13492. doi: 10.1074/jbc.273.22.13488. [DOI] [PubMed] [Google Scholar]
- Littleton J. T., Stern M., Schulze K., Perin M., Bellen H. J. Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell. 1993 Sep 24;74(6):1125–1134. doi: 10.1016/0092-8674(93)90733-7. [DOI] [PubMed] [Google Scholar]
- Machado J. D., Morales A., Gomez J. F., Borges R. cAmp modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol. 2001 Sep;60(3):514–520. [PubMed] [Google Scholar]
- Magga J. M., Jarvis S. E., Arnot M. I., Zamponi G. W., Braun J. E. Cysteine string protein regulates G protein modulation of N-type calcium channels. Neuron. 2000 Oct;28(1):195–204. doi: 10.1016/s0896-6273(00)00096-9. [DOI] [PubMed] [Google Scholar]
- Mastrogiacomo A., Parsons S. M., Zampighi G. A., Jenden D. J., Umbach J. A., Gundersen C. B. Cysteine string proteins: a potential link between synaptic vesicles and presynaptic Ca2+ channels. Science. 1994 Feb 18;263(5149):981–982. doi: 10.1126/science.7906056. [DOI] [PubMed] [Google Scholar]
- Nie Z., Ranjan R., Wenniger J. J., Hong S. N., Bronk P., Zinsmaier K. E. Overexpression of cysteine-string proteins in Drosophila reveals interactions with syntaxin. J Neurosci. 1999 Dec 1;19(23):10270–10279. doi: 10.1523/JNEUROSCI.19-23-10270.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonet M. L., Grundahl K., Meyer B. J., Rand J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell. 1993 Jul 2;73(7):1291–1305. doi: 10.1016/0092-8674(93)90357-v. [DOI] [PubMed] [Google Scholar]
- Phillips A. M., Smith M., Ramaswami M., Kelly L. E. The products of the Drosophila stoned locus interact with synaptic vesicles via synaptotagmin. J Neurosci. 2000 Nov 15;20(22):8254–8261. doi: 10.1523/JNEUROSCI.20-22-08254.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ranjan R., Bronk P., Zinsmaier K. E. Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling. J Neurosci. 1998 Feb 1;18(3):956–964. doi: 10.1523/JNEUROSCI.18-03-00956.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schivell A. E., Batchelor R. H., Bajjalieh S. M. Isoform-specific, calcium-regulated interaction of the synaptic vesicle proteins SV2 and synaptotagmin. J Biol Chem. 1996 Nov 1;271(44):27770–27775. doi: 10.1074/jbc.271.44.27770. [DOI] [PubMed] [Google Scholar]
- Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–418. doi: 10.1016/0092-8674(93)90376-2. [DOI] [PubMed] [Google Scholar]
- Tobaben S., Thakur P., Fernández-Chacón R., Südhof T. C., Rettig J., Stahl B. A trimeric protein complex functions as a synaptic chaperone machine. Neuron. 2001 Sep 27;31(6):987–999. doi: 10.1016/s0896-6273(01)00427-5. [DOI] [PubMed] [Google Scholar]
- Ungewickell E., Ungewickell H., Holstein S. E., Lindner R., Prasad K., Barouch W., Martin B., Greene L. E., Eisenberg E. Role of auxilin in uncoating clathrin-coated vesicles. Nature. 1995 Dec 7;378(6557):632–635. doi: 10.1038/378632a0. [DOI] [PubMed] [Google Scholar]
- Wang C. T., Grishanin R., Earles C. A., Chang P. Y., Martin T. F., Chapman E. R., Jackson M. B. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles. Science. 2001 Nov 2;294(5544):1111–1115. doi: 10.1126/science.1064002. [DOI] [PubMed] [Google Scholar]
- Wu M. N., Fergestad T., Lloyd T. E., He Y., Broadie K., Bellen H. J. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron. 1999 Jul;23(3):593–605. doi: 10.1016/s0896-6273(00)80811-9. [DOI] [PubMed] [Google Scholar]
- Zhang H., Kelley W. L., Chamberlain L. H., Burgoyne R. D., Lang J. Mutational analysis of cysteine-string protein function in insulin exocytosis. J Cell Sci. 1999 May;112(Pt 9):1345–1351. doi: 10.1242/jcs.112.9.1345. [DOI] [PubMed] [Google Scholar]
- Zhang J. Z., Davletov B. A., Südhof T. C., Anderson R. G. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell. 1994 Sep 9;78(5):751–760. doi: 10.1016/s0092-8674(94)90442-1. [DOI] [PubMed] [Google Scholar]
- Zinsmaier K. E., Bronk P. Molecular chaperones and the regulation of neurotransmitter exocytosis. Biochem Pharmacol. 2001 Jul 1;62(1):1–11. doi: 10.1016/s0006-2952(01)00648-7. [DOI] [PubMed] [Google Scholar]
- Zinsmaier K. E., Hofbauer A., Heimbeck G., Pflugfelder G. O., Buchner S., Buchner E. A cysteine-string protein is expressed in retina and brain of Drosophila. J Neurogenet. 1990 Nov;7(1):15–29. doi: 10.3109/01677069009084150. [DOI] [PubMed] [Google Scholar]