Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 1;364(Pt 2):369–376. doi: 10.1042/BJ20011438

Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels.

Pavel Flachs 1, Jirí Novotný 1, Filip Baumruk 1, Kristina Bardová 1, Lenka Bourová 1, Ivan Miksík 1, Jana Sponarová 1, Petr Svoboda 1, Jan Kopecký 1
PMCID: PMC1222581  PMID: 12023879

Abstract

In vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocytes of aP2-Ucp1 transgenic mice, overexpressing the UCP1 gene from the aP2 gene promoter, reflecting the magnitude of UCP1 expression, the impaired stimulation of cAMP levels by noradrenaline and the reduction of the ATP/ADP ratio in different fat depots. Thus only subcutaneous but not epididymal fat was affected. UCP1 also down-regulated the expression of hormone-sensitive lipase and lowered its activity, and altered the expression of trimeric G-proteins in adipocytes. The adipose tissue content of the stimulatory G-protein alpha subunit was increased while that of the inhibitory G-protein alpha subunits decreased in response to UCP1 expression. Our results support the idea that the energy status of cells, and the ATP/ADP ratio in particular, modulates the lipolytic effects of noradrenaline in adipose tissue in vivo. They also demonstrate changes at the G-protein level that tend to overcome the reduction of lipolysis when ATP level in adipocytes is low. Therefore, respiratory uncoupling may exert a broad effect on hormonal signalling in adipocytes.

Full Text

The Full Text of this article is available as a PDF (178.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel A., Desai K. S., Halperin M. L. Reduction in adipocyte ATP by lipolytic agents: relation to intracellular free fatty acid accumulation. J Lipid Res. 1971 Mar;12(2):203–213. [PubMed] [Google Scholar]
  2. Argaud D., Roth H., Wiernsperger N., Leverve X. M. Metformin decreases gluconeogenesis by enhancing the pyruvate kinase flux in isolated rat hepatocytes. Eur J Biochem. 1993 May 1;213(3):1341–1348. doi: 10.1111/j.1432-1033.1993.tb17886.x. [DOI] [PubMed] [Google Scholar]
  3. Arner P., Kriegholm E., Engfeldt P., Bolinder J. Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest. 1990 Mar;85(3):893–898. doi: 10.1172/JCI114516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arsenijevic D., Onuma H., Pecqueur C., Raimbault S., Manning B. S., Miroux B., Couplan E., Alves-Guerra M. C., Goubern M., Surwit R. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet. 2000 Dec;26(4):435–439. doi: 10.1038/82565. [DOI] [PubMed] [Google Scholar]
  5. Baumruk F., Flachs P., Horáková M., Floryk D., Kopecký J. Transgenic UCP1 in white adipocytes modulates mitochondrial membrane potential. FEBS Lett. 1999 Feb 12;444(2-3):206–210. doi: 10.1016/s0014-5793(99)00053-8. [DOI] [PubMed] [Google Scholar]
  6. Bourova L., Novotný J., Svoboda P. Resolution and identification of Gq/G11alpha and Gialpha/Goalpha proteins in brown adipose tissue: effect of cold acclimation. J Mol Endocrinol. 1999 Oct;23(2):223–229. doi: 10.1677/jme.0.0230223. [DOI] [PubMed] [Google Scholar]
  7. Bourová L., Novotn J., Svoboda P. The decrease in the short variant of gsalpha protein is associated with an increase in [3H]CGP12177 binding, [3H]ouabain binding and Na, K-ATPase activity in brown adipose tissue plasma membranes of cold-acclimated hamsters. J Mol Endocrinol. 1999 Feb;22(1):55–64. doi: 10.1677/jme.0.0220055. [DOI] [PubMed] [Google Scholar]
  8. Brasaemle D. L., Levin D. M., Adler-Wailes D. C., Londos C. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim Biophys Acta. 2000 Jan 17;1483(2):251–262. doi: 10.1016/s1388-1981(99)00179-1. [DOI] [PubMed] [Google Scholar]
  9. Cabrero A, Alegret M., Sánchez R. M., Adzet T., Laguna J. C., Vázquez M. Bezafibrate reduces mRNA levels of adipocyte markers and increases fatty acid oxidation in primary culture of adipocytes. Diabetes. 2001 Aug;50(8):1883–1890. doi: 10.2337/diabetes.50.8.1883. [DOI] [PubMed] [Google Scholar]
  10. Cadenas S., Buckingham J. A., St-Pierre J., Dickinson K., Jones R. B., Brand M. D. AMP decreases the efficiency of skeletal-muscle mitochondria. Biochem J. 2000 Oct 15;351(Pt 2):307–311. [PMC free article] [PubMed] [Google Scholar]
  11. Carel J. C., Le Stunff C., Condamine L., Mallet E., Chaussain J. L., Adnot P., Garabédian M., Bougnères P. Resistance to the lipolytic action of epinephrine: a new feature of protein Gs deficiency. J Clin Endocrinol Metab. 1999 Nov;84(11):4127–4131. doi: 10.1210/jcem.84.11.6145. [DOI] [PubMed] [Google Scholar]
  12. Carey G. B. Mechanisms regulating adipocyte lipolysis. Adv Exp Med Biol. 1998;441:157–170. doi: 10.1007/978-1-4899-1928-1_15. [DOI] [PubMed] [Google Scholar]
  13. Cederberg A., Grønning L. M., Ahrén B., Taskén K., Carlsson P., Enerbäck S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell. 2001 Sep 7;106(5):563–573. doi: 10.1016/s0092-8674(01)00474-3. [DOI] [PubMed] [Google Scholar]
  14. Echtay K. S., Winkler E., Frischmuth K., Klingenberg M. Uncoupling proteins 2 and 3 are highly active H(+) transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1416–1421. doi: 10.1073/pnas.98.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Echtay Karim S., Roussel Damien, St-Pierre Julie, Jekabsons Mika B., Cadenas Susana, Stuart Jeff A., Harper James A., Roebuck Stephen J., Morrison Alastair, Pickering Susan. Superoxide activates mitochondrial uncoupling proteins. Nature. 2002 Jan 3;415(6867):96–99. doi: 10.1038/415096a. [DOI] [PubMed] [Google Scholar]
  16. Enerbäck S., Jacobsson A., Simpson E. M., Guerra C., Yamashita H., Harper M. E., Kozak L. P. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997 May 1;387(6628):90–94. doi: 10.1038/387090a0. [DOI] [PubMed] [Google Scholar]
  17. Fassina G., Dorigo P., Gaion R. M. Equilibrium between metabolic pathways producing energy: a key factor in regulating lipolysis. Pharmacol Res Commun. 1974 Feb;6(1):1–21. doi: 10.1016/s0031-6989(74)80010-x. [DOI] [PubMed] [Google Scholar]
  18. Gong D. W., He Y., Karas M., Reitman M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem. 1997 Sep 26;272(39):24129–24132. doi: 10.1074/jbc.272.39.24129. [DOI] [PubMed] [Google Scholar]
  19. Gong D. W., Monemdjou S., Gavrilova O., Leon L. R., Marcus-Samuels B., Chou C. J., Everett C., Kozak L. P., Li C., Deng C. Lack of obesity and normal response to fasting and thyroid hormone in mice lacking uncoupling protein-3. J Biol Chem. 2000 May 26;275(21):16251–16257. doi: 10.1074/jbc.M910177199. [DOI] [PubMed] [Google Scholar]
  20. Guerra C., Koza R. A., Yamashita H., Walsh K., Kozak L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest. 1998 Jul 15;102(2):412–420. doi: 10.1172/JCI3155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Harding S. E., Hopwood A. M., Harris P. GTP-independent stimulation of rabbit heart adenylate cyclase by isoproterenol at physiological ATP concentrations. Basic Res Cardiol. 1989 Jan-Feb;84(1):30–41. doi: 10.1007/BF01907001. [DOI] [PubMed] [Google Scholar]
  22. Himms-Hagen J., Melnyk A., Zingaretti M. C., Ceresi E., Barbatelli G., Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol. 2000 Sep;279(3):C670–C681. doi: 10.1152/ajpcell.2000.279.3.C670. [DOI] [PubMed] [Google Scholar]
  23. Ho R. J., England R., Meng H. C. Effect of glucose on lipolysis and energy metabolism in fat cells. Life Sci. 1970 Feb 1;9(3):137–150. doi: 10.1016/0024-3205(70)90358-9. [DOI] [PubMed] [Google Scholar]
  24. Holm C., Osterlund T., Laurell H., Contreras J. A. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr. 2000;20:365–393. doi: 10.1146/annurev.nutr.20.1.365. [DOI] [PubMed] [Google Scholar]
  25. Huber C. T., Duckworth W. C., Solomon S. S. The reversible inhibition by carbonyl cyanide m-chlorophenyl hydrazone of epinephrine-stimulated lipolysis in perifused isolated fat cells. Biochim Biophys Acta. 1981 Dec 23;666(3):462–467. doi: 10.1016/0005-2760(81)90307-6. [DOI] [PubMed] [Google Scholar]
  26. Häring H. U., Rinninger F., Kemmler W. Decreased insulin sensitivity due to a postreceptor defect as a consequence of ATP-deficiency in fat cells. FEBS Lett. 1981 Sep 28;132(2):235–238. doi: 10.1016/0014-5793(81)81168-4. [DOI] [PubMed] [Google Scholar]
  27. Klein J., Fasshauer M., Ito M., Lowell B. B., Benito M., Kahn C. R. beta(3)-adrenergic stimulation differentially inhibits insulin signaling and decreases insulin-induced glucose uptake in brown adipocytes. J Biol Chem. 1999 Dec 3;274(49):34795–34802. doi: 10.1074/jbc.274.49.34795. [DOI] [PubMed] [Google Scholar]
  28. Kopecky J., Clarke G., Enerbäck S., Spiegelman B., Kozak L. P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J Clin Invest. 1995 Dec;96(6):2914–2923. doi: 10.1172/JCI118363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kopecký J., Hodný Z., Rossmeisl M., Syrový I., Kozak L. P. Reduction of dietary obesity in aP2-Ucp transgenic mice: physiology and adipose tissue distribution. Am J Physiol. 1996 May;270(5 Pt 1):E768–E775. doi: 10.1152/ajpendo.1996.270.5.E768. [DOI] [PubMed] [Google Scholar]
  30. Kopecký J., Rossmeisl M., Hodný Z., Syrový I., Horáková M., Kolárová P. Reduction of dietary obesity in aP2-Ucp transgenic mice: mechanism and adipose tissue morphology. Am J Physiol. 1996 May;270(5 Pt 1):E776–E786. doi: 10.1152/ajpendo.1996.270.5.E776. [DOI] [PubMed] [Google Scholar]
  31. Kraemer F. B., Patel S., Saedi M. S., Sztalryd C. Detection of hormone-sensitive lipase in various tissues. I. Expression of an HSL/bacterial fusion protein and generation of anti-HSL antibodies. J Lipid Res. 1993 Apr;34(4):663–671. [PubMed] [Google Scholar]
  32. Kvapil P., Novotny J., Ransnäs L. A. Prolonged exposure of hamsters to cold changes the levels of G proteins in brown adipose tissue plasma membranes. Life Sci. 1995;57(4):311–318. doi: 10.1016/0024-3205(95)00289-i. [DOI] [PubMed] [Google Scholar]
  33. LaNoue K. F., Strzelecki T., Strzelecka D., Koch C. Regulation of the uncoupling protein in brown adipose tissue. J Biol Chem. 1986 Jan 5;261(1):298–305. [PubMed] [Google Scholar]
  34. Laurin N. N., Wang S. P., Mitchell G. A. The hormone-sensitive lipase gene is transcribed from at least five alternative first exons in mouse adipose tissue. Mamm Genome. 2000 Nov;11(11):972–978. doi: 10.1007/s003350010185. [DOI] [PubMed] [Google Scholar]
  35. Li B., Nolte L. A., Ju J. S., Han D. H., Coleman T., Holloszy J. O., Semenkovich C. F. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat Med. 2000 Oct;6(10):1115–1120. doi: 10.1038/80450. [DOI] [PubMed] [Google Scholar]
  36. Liu J., Yu S., Litman D., Chen W., Weinstein L. S. Identification of a methylation imprint mark within the mouse Gnas locus. Mol Cell Biol. 2000 Aug;20(16):5808–5817. doi: 10.1128/mcb.20.16.5808-5817.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Migliorini R. H., Garofalo M. A., Kettelhut I. C. Increased sympathetic activity in rat white adipose tissue during prolonged fasting. Am J Physiol. 1997 Feb;272(2 Pt 2):R656–R661. doi: 10.1152/ajpregu.1997.272.2.R656. [DOI] [PubMed] [Google Scholar]
  38. Mitchell F. M., Griffiths S. L., Saggerson E. D., Houslay M. D., Knowler J. T., Milligan G. Guanine-nucleotide-binding proteins expressed in rat white adipose tissue. Identification of both mRNAs and proteins corresponding to Gi1, Gi2 and Gi3. Biochem J. 1989 Sep 1;262(2):403–408. doi: 10.1042/bj2620403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Moxham C. M., Malbon C. C. Insulin action impaired by deficiency of the G-protein subunit G ialpha2. Nature. 1996 Feb 29;379(6568):840–844. doi: 10.1038/379840a0. [DOI] [PubMed] [Google Scholar]
  40. Nishida M., Maruyama Y., Tanaka R., Kontani K., Nagao T., Kurose H. G alpha(i) and G alpha(o) are target proteins of reactive oxygen species. Nature. 2000 Nov 23;408(6811):492–495. doi: 10.1038/35044120. [DOI] [PubMed] [Google Scholar]
  41. Novotny J., Kvapil P., Bokoch G. M., Ransnäs L. A. Isoproterenol-induced subcellular redistribution of G-protein beta subunits in S49 lymphoma cells demonstrated by a novel competitive ELISA. Arch Physiol Biochem. 1995 May;103(2):202–210. doi: 10.3109/13813459508996134. [DOI] [PubMed] [Google Scholar]
  42. Osuga J., Ishibashi S., Oka T., Yagyu H., Tozawa R., Fujimoto A., Shionoiri F., Yahagi N., Kraemer F. B., Tsutsumi O. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):787–792. doi: 10.1073/pnas.97.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pecqueur C., Alves-Guerra M. C., Gelly C., Levi-Meyrueis C., Couplan E., Collins S., Ricquier D., Bouillaud F., Miroux B. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem. 2000 Nov 29;276(12):8705–8712. doi: 10.1074/jbc.M006938200. [DOI] [PubMed] [Google Scholar]
  44. Plée-Gautier E., Grober J., Duplus E., Langin D., Forest C. Inhibition of hormone-sensitive lipase gene expression by cAMP and phorbol esters in 3T3-F442A and BFC-1 adipocytes. Biochem J. 1996 Sep 15;318(Pt 3):1057–1063. doi: 10.1042/bj3181057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
  46. Rapiejko P. J., Watkins D. C., Ros M., Malbon C. C. G-protein subunit mRNA levels in rat heart, liver, and adipose tissues: analysis by DNA-excess solution hybridization. Biochim Biophys Acta. 1990 May 2;1052(2):348–350. doi: 10.1016/0167-4889(90)90233-4. [DOI] [PubMed] [Google Scholar]
  47. Ricquier D., Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000 Jan 15;345(Pt 2):161–179. [PMC free article] [PubMed] [Google Scholar]
  48. Rossmeisl M., Syrový I., Baumruk F., Flachs P., Janovská P., Kopecký J. Decreased fatty acid synthesis due to mitochondrial uncoupling in adipose tissue. FASEB J. 2000 Sep;14(12):1793–1800. doi: 10.1096/fj.99-0965com. [DOI] [PubMed] [Google Scholar]
  49. Skulachev V. P. Anion carriers in fatty acid-mediated physiological uncoupling. J Bioenerg Biomembr. 1999 Oct;31(5):431–445. doi: 10.1023/a:1005492205984. [DOI] [PubMed] [Google Scholar]
  50. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  51. Stefl B., Janovská A., Hodný Z., Rossmeisl M., Horáková M., Syrový I., Bémová J., Bendlová B., Kopecký J. Brown fat is essential for cold-induced thermogenesis but not for obesity resistance in aP2-Ucp mice. Am J Physiol. 1998 Mar;274(3 Pt 1):E527–E533. doi: 10.1152/ajpendo.1998.274.3.E527. [DOI] [PubMed] [Google Scholar]
  52. Stein J. M. The effect of adrenaline and of alpha- and beta-adrenergic blocking agents on ATP concentration and on incorporation of 32Pi into ATP in rat fat cells. Biochem Pharmacol. 1975 Sep 15;24(18):1659–1662. doi: 10.1016/0006-2952(75)90002-7. [DOI] [PubMed] [Google Scholar]
  53. Svoboda P., Unelius L., Dicker A., Cannon B., Milligan G., Nedergaard J. Cold-induced reduction in Gi alpha proteins in brown adipose tissue. Effects on the cellular hypersensitization to noradrenaline caused by pertussis-toxin treatment. Biochem J. 1996 Mar 15;314(Pt 3):761–768. doi: 10.1042/bj3140761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Sztalryd C., Kraemer F. B. Regulation of hormone-sensitive lipase during fasting. Am J Physiol. 1994 Feb;266(2 Pt 1):E179–E185. doi: 10.1152/ajpendo.1994.266.2.E179. [DOI] [PubMed] [Google Scholar]
  55. Tansey J. T., Sztalryd C., Gruia-Gray J., Roush D. L., Zee J. V., Gavrilova O., Reitman M. L., Deng C. X., Li C., Kimmel A. R. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6494–6499. doi: 10.1073/pnas.101042998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Vidal-Puig A. J., Grujic D., Zhang C. Y., Hagen T., Boss O., Ido Y., Szczepanik A., Wade J., Mootha V., Cortright R. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26;275(21):16258–16266. doi: 10.1074/jbc.M910179199. [DOI] [PubMed] [Google Scholar]
  57. Yoshida T., Sakane N., Umekawa T., Kogure A., Kondo M., Kumamoto K., Kawada T., Nagase I., Saito M. Nicotine induces uncoupling protein 1 in white adipose tissue of obese mice. Int J Obes Relat Metab Disord. 1999 Jun;23(6):570–575. doi: 10.1038/sj.ijo.0800870. [DOI] [PubMed] [Google Scholar]
  58. Yu S., Gavrilova O., Chen H., Lee R., Liu J., Pacak K., Parlow A. F., Quon M. J., Reitman M. L., Weinstein L. S. Paternal versus maternal transmission of a stimulatory G-protein alpha subunit knockout produces opposite effects on energy metabolism. J Clin Invest. 2000 Mar;105(5):615–623. doi: 10.1172/JCI8437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Yu X. X., Mao W., Zhong A., Schow P., Brush J., Sherwood S. W., Adams S. H., Pan G. Characterization of novel UCP5/BMCP1 isoforms and differential regulation of UCP4 and UCP5 expression through dietary or temperature manipulation. FASEB J. 2000 Aug;14(11):1611–1618. doi: 10.1096/fj.14.11.1611. [DOI] [PubMed] [Google Scholar]
  60. Zhang C. Y., Baffy G., Perret P., Krauss S., Peroni O., Grujic D., Hagen T., Vidal-Puig A. J., Boss O., Kim Y. B. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001 Jun 15;105(6):745–755. doi: 10.1016/s0092-8674(01)00378-6. [DOI] [PubMed] [Google Scholar]
  61. Zhou Y. T., Wang Z. W., Higa M., Newgard C. B., Unger R. H. Reversing adipocyte differentiation: implications for treatment of obesity. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2391–2395. doi: 10.1073/pnas.96.5.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES