Abstract
Top-Down (Metabolic) Control Analysis (TDCA) was used to examine, quantitatively, lipid biosynthesis in tissue cultures from two commercially important oil crops, olive (Olea europaea L.) and oil palm (Elaeis guineensis Jacq.). A conceptually simplified system was defined comprising two blocks of reactions: fatty acid synthesis (Block A) and lipid assembly (Block B), which produced and consumed, respectively, a common and unique system intermediate, cytosolic acyl-CoA. We manipulated the steady-state levels of the system intermediate by adding exogenous oleic acid and, using two independent assays, measured the effect of the addition on the system fluxes (J(A) and J(B)). These were the rate of incorporation of radioactivity: (i) through Block A from [1-(14)C]acetate into fatty acids and (ii) via Block B from [U-(14)C]glycerol into complex lipids respectively. The data showed that fatty acid formation (Block A) exerted higher control than lipid assembly (Block B) in both tissues with the following group flux control coefficients (C):(i) Oil palm: *C(J(TL))(BlkA)=0.64+/-0.05 and *C(J(TL))(BlkB)=0.36+/-0.05(ii) Olive: *C(J(TL))(BlkA)=0.57+/-0.10 and *C(J(TL))(BlkB)=0.43+/-0.10where *C indicates the group flux control coefficient over the lipid biosynthesis flux (J(TL)) and the subscripts BlkA and BlkB refer to defined blocks of the system, Block A and Block B. Nevertheless, because both parts of the lipid biosynthetic pathway exert significant flux control, we suggest strongly that manipulation of single enzyme steps will not affect product yield appreciably. The present study represents the first use of TDCA to examine the overall lipid biosynthetic pathway in any tissue, and its findings are of immediate academic and economic relevance to the yield and nutritional quality of oil crops.
Full Text
The Full Text of this article is available as a PDF (150.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bafor M., Jonsson L., Stobart A. K., Stymne S. Regulation of triacylglycerol biosynthesis in embryos and microsomal preparations from the developing seeds of Cuphea lanceolata. Biochem J. 1990 Nov 15;272(1):31–38. doi: 10.1042/bj2720031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banaś A., Dahlqvist A., Ståhl U., Lenman M., Stymne S. The involvement of phospholipid:diacylglycerol acyltransferases in triacylglycerol production. Biochem Soc Trans. 2000 Dec;28(6):703–705. [PubMed] [Google Scholar]
- Bao X, Ohlrogge J. Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos . Plant Physiol. 1999 Aug;120(4):1057–1062. doi: 10.1104/pp.120.4.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand M. D. Top down metabolic control analysis. J Theor Biol. 1996 Oct 7;182(3):351–360. doi: 10.1006/jtbi.1996.0174. [DOI] [PubMed] [Google Scholar]
- Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
- Cahoon E. B., Shanklin J., Ohlrogge J. B. Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11184–11188. doi: 10.1073/pnas.89.23.11184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eccleston VS, Ohlrogge JB. Expression of lauroyl-acyl carrier protein thioesterase in brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation . Plant Cell. 1998 Apr;10(4):613–622. doi: 10.1105/tpc.10.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fell D. A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J. 1992 Sep 1;286(Pt 2):313–330. doi: 10.1042/bj2860313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARBUS J., DELUCA H. F., LOOMANS M. E., STRONG F. M. The rapid incorporation of phosphate into mitochondrial lipids. J Biol Chem. 1963 Jan;238:59–63. [PubMed] [Google Scholar]
- Harwood J. L. Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta. 1996 May 31;1301(1-2):7–56. doi: 10.1016/0005-2760(95)00242-1. [DOI] [PubMed] [Google Scholar]
- Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
- KENNEDY E. P. Biosynthesis of complex lipids. Fed Proc. 1961 Dec;20:934–940. [PubMed] [Google Scholar]
- Kacser H., Acerenza L. A universal method for achieving increases in metabolite production. Eur J Biochem. 1993 Sep 1;216(2):361–367. doi: 10.1111/j.1432-1033.1993.tb18153.x. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
- Knutzon D. S., Thompson G. A., Radke S. E., Johnson W. B., Knauf V. C., Kridl J. C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2624–2628. doi: 10.1073/pnas.89.7.2624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mekhedov S., de Ilárduya O. M., Ohlrogge J. Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol. 2000 Feb;122(2):389–402. doi: 10.1104/pp.122.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohlrogge J., Browse J. Lipid biosynthesis. Plant Cell. 1995 Jul;7(7):957–970. doi: 10.1105/tpc.7.7.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohlrogge John B., Jaworski Jan G. REGULATION OF FATTY ACID SYNTHESIS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):109–136. doi: 10.1146/annurev.arplant.48.1.109. [DOI] [PubMed] [Google Scholar]
- Page R. A., Okada S., Harwood J. L. Acetyl-CoA carboxylase exerts strong flux control over lipid synthesis in plants. Biochim Biophys Acta. 1994 Jan 20;1210(3):369–372. doi: 10.1016/0005-2760(94)90242-9. [DOI] [PubMed] [Google Scholar]
- Pollard M., Ohlrogge J. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling. Plant Physiol. 1999 Dec;121(4):1217–1226. doi: 10.1104/pp.121.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quant P. A. Experimental application of top-down control analysis to metabolic systems. Trends Biochem Sci. 1993 Jan;18(1):26–30. doi: 10.1016/0968-0004(93)90084-z. [DOI] [PubMed] [Google Scholar]
- Quant P. A., Robin D., Robin P., Girard J., Brand M. D. A top-down control analysis in isolated rat liver mitochondria: can the 3-hydroxy-3-methylglutaryl-CoA pathway be rate-controlling for ketogenesis? Biochim Biophys Acta. 1993 Feb 13;1156(2):135–143. doi: 10.1016/0304-4165(93)90128-u. [DOI] [PubMed] [Google Scholar]
- Ramli U. S., Quant P. A., Harwood J. L. Biochemical studies of oil biosynthesis in olive (Olea europea) and oil palm (Elaeis guineensis) callus cultures. Biochem Soc Trans. 1998 May;26(2):S151–S151. doi: 10.1042/bst026s151. [DOI] [PubMed] [Google Scholar]
- Ramli Umi S., Baker Darren S., Quant Patti A., Harwood John L. Control mechanisms operating for lipid biosynthesis differ in oil-palm (Elaeis guineensis Jacq.) and olive (Olea europaea L.) callus cultures. Biochem J. 2002 Jun 1;364(Pt 2):385–391. doi: 10.1042/BJ20010202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salas J. J., Sánchez J., Ramli U. S., Manaf A. M., Williams M., Harwood J. L. Biochemistry of lipid metabolism in olive and other oil fruits. Prog Lipid Res. 2000 Mar;39(2):151–180. doi: 10.1016/s0163-7827(00)00003-5. [DOI] [PubMed] [Google Scholar]
- Terzaghi W. B. A system for manipulating the membrane Fatty Acid composition of soybean cell cultures by adding tween-Fatty Acid esters to their growth medium : basic parameters and effects on cell growth. Plant Physiol. 1986 Nov;82(3):771–779. doi: 10.1104/pp.82.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zou J., Katavic V., Giblin E. M., Barton D. L., MacKenzie S. L., Keller W. A., Hu X., Taylor D. C. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell. 1997 Jun;9(6):909–923. doi: 10.1105/tpc.9.6.909. [DOI] [PMC free article] [PubMed] [Google Scholar]