Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 1;364(Pt 2):457–463. doi: 10.1042/BJ20011376

Structure-function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life.

Sonia Facchin 1, Raffaele Lopreiato 1, Silvia Stocchetto 1, Giorgio Arrigoni 1, Luca Cesaro 1, Oriano Marin 1, Giovanna Carignani 1, Lorenzo A Pinna 1
PMCID: PMC1222591  PMID: 12023889

Abstract

The Saccharomyces cerevisiae YGR262c/BUD32 gene, whose disruption causes a severe pleiotropic phenotype, encodes a 261-residue putative protein kinase, piD261, whose structural homologues have been identified in a variety of organisms, including humans, and whose function is unknown. We have demonstrated previously that piD261, expressed in Escherichia coli as a recombinant protein, is a Ser/Thr kinase, as judged by its ability to autophosphorylate and to phosphorylate casein. Here we describe a mutational analysis showing that, despite low sequence similarity, the invariant residues representing the signature of protein kinases are conserved in piD261 and in its structural homologues, but are embedded in an altered context, suggestive of unique mechanistic properties. Especially noteworthy are: (i) three unique inserts of unknown function within the N-terminal lobe, (ii) the lack of a lysyl residue which in all other Ser/Thr kinases participates in the catalytic event by interacting with the transferred ATP gamma-phosphate, and which in piD261 is replaced by a threonine, and (iii) an exceedingly short activation loop including two serines, Ser-187 and Ser-189, whose autophosphorylation accounts for the appearance of an upshifted band upon SDS/PAGE. A mutant in which these serines are replaced by alanines was devoid of the upshifted band and displayed reduced catalytic activity. This would include piD261 in the category of protein kinases activated by phosphorylation, although it lacks the RD (Arg-Asp) motif which is typical of these enzymes.

Full Text

The Full Text of this article is available as a PDF (245.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briza Peter, Bogengruber Edith, Thür Albert, Rützler Michael, Münsterkötter Martin, Dawes Ian W., Breitenbach Michael. Systematic analysis of sporulation phenotypes in 624 non-lethal homozygous deletion strains of Saccharomyces cerevisiae. Yeast. 2002 Mar 30;19(5):403–422. doi: 10.1002/yea.843. [DOI] [PubMed] [Google Scholar]
  2. Gibbs C. S., Zoller M. J. Rational scanning mutagenesis of a protein kinase identifies functional regions involved in catalysis and substrate interactions. J Biol Chem. 1991 May 15;266(14):8923–8931. [PubMed] [Google Scholar]
  3. Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
  4. Herberg F. W., Bell S. M., Taylor S. S. Expression of the catalytic subunit of cAMP-dependent protein kinase in Escherichia coli: multiple isozymes reflect different phosphorylation states. Protein Eng. 1993 Sep;6(7):771–777. doi: 10.1093/protein/6.7.771. [DOI] [PubMed] [Google Scholar]
  5. Hunter T., Plowman G. D. The protein kinases of budding yeast: six score and more. Trends Biochem Sci. 1997 Jan;22(1):18–22. doi: 10.1016/s0968-0004(96)10068-2. [DOI] [PubMed] [Google Scholar]
  6. Johnson L. N., Noble M. E., Owen D. J. Active and inactive protein kinases: structural basis for regulation. Cell. 1996 Apr 19;85(2):149–158. doi: 10.1016/s0092-8674(00)81092-2. [DOI] [PubMed] [Google Scholar]
  7. Marin O., Meggio F., Sarno S., Pinna L. A. Physical dissection of the structural elements responsible for regulatory properties and intersubunit interactions of protein kinase CK2 beta-subunit. Biochemistry. 1997 Jun 10;36(23):7192–7198. doi: 10.1021/bi962885q. [DOI] [PubMed] [Google Scholar]
  8. Ni L., Snyder M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell. 2001 Jul;12(7):2147–2170. doi: 10.1091/mbc.12.7.2147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Parker P. J. Antibodies to fluorylsulfonylbenzoyladenosine permit identification of protein kinases. FEBS Lett. 1993 Nov 22;334(3):347–350. doi: 10.1016/0014-5793(93)80709-4. [DOI] [PubMed] [Google Scholar]
  10. Pinna L. A., Ruzzene M. How do protein kinases recognize their substrates? Biochim Biophys Acta. 1996 Dec 12;1314(3):191–225. doi: 10.1016/s0167-4889(96)00083-3. [DOI] [PubMed] [Google Scholar]
  11. Plowman G. D., Sudarsanam S., Bingham J., Whyte D., Hunter T. The protein kinases of Caenorhabditis elegans: a model for signal transduction in multicellular organisms. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13603–13610. doi: 10.1073/pnas.96.24.13603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sartori G., Mazzotta G., Stocchetto S., Pavanello A., Carignani G. Inactivation of six genes from chromosomes VII and XIV of Saccharomyces cerevisiae and basic phenotypic analysis of the mutant strains. Yeast. 2000 Feb;16(3):255–265. doi: 10.1002/(SICI)1097-0061(200002)16:3<255::AID-YEA520>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  13. Shoji S., Titani K., Demaille J. G., Fischer E. H. Sequence of two phosphorylated sites in the catalytic subunit of bovine cardiac muscle adenosine 3':5'-monophosphate-dependent protein kinase. J Biol Chem. 1979 Jul 25;254(14):6211–6214. [PubMed] [Google Scholar]
  14. Steinberg R. A., Cauthron R. D., Symcox M. M., Shuntoh H. Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197. Mol Cell Biol. 1993 Apr;13(4):2332–2341. doi: 10.1128/mcb.13.4.2332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stocchetto S., Marin O., Carignani G., Pinna L. A. Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. FEBS Lett. 1997 Sep 1;414(1):171–175. doi: 10.1016/s0014-5793(97)00980-0. [DOI] [PubMed] [Google Scholar]
  16. Taylor S. S., Radzio-Andzelm E., Hunter T. How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the insulin receptor protein-tyrosine kinase. FASEB J. 1995 Oct;9(13):1255–1266. doi: 10.1096/fasebj.9.13.7557015. [DOI] [PubMed] [Google Scholar]
  17. Taylor S. S., Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure. 1994 May 15;2(5):345–355. doi: 10.1016/s0969-2126(00)00036-8. [DOI] [PubMed] [Google Scholar]
  18. Venter J. C., Adams M. D., Myers E. W., Li P. W., Mural R. J., Sutton G. G., Smith H. O., Yandell M., Evans C. A., Holt R. A. The sequence of the human genome. Science. 2001 Feb 16;291(5507):1304–1351. doi: 10.1126/science.1058040. [DOI] [PubMed] [Google Scholar]
  19. Yonemoto W., Garrod S. M., Bell S. M., Taylor S. S. Identification of phosphorylation sites in the recombinant catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1993 Sep 5;268(25):18626–18632. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES