Abstract
Implants of allogenic demineralized bone matrix were placed in distinct in vivo environments, i.e. calvarial (bony) and subcutaneous (soft tissue) sites. Detailed analyses of the biochemical components were performed. Quantitative levels of osteopontin (OPN), bone sialoprotein (BSP) and calcium phosphate (Ca-P) deposition within each implant environment varied as a function of new bone formation, and were substantially different in samples from calvarial and subcutaneous sites. Quantification of the extent of phosphorylation of affinity-purified OPN and BSP from such implants indicated that: (i) the number of mols of phosphoserine (P-Ser)/mol of affinity-purified OPN or BSP varied as a function of implant time and bone formation within both implant sites, and (ii) the 'effective P-Ser concentration' provided by the total OPN and BSP within each implant site varied and increased as a function of time, being approx. 5-fold higher for BSP in calvarial compared with subcutaneous implants. Peak levels of mols of P-Ser/mol of BSP coincided with maximum rates of Ca-P deposition in calvarial implants. Levels of OPN phosphorylation from both calvarial and subcutaneous implants also indicated fluctuations as a function of bone formation. Hence the present study, for the first time, provides direct evidence of natural variation in the extent of phosphorylation of both OPN and BSP as a function of time of mineralized tissue formation. Further evaluation of the data provides the first evidence of a direct and linear relationship between the rate of Ca-P deposition and the ratio of P-Ser-BSP/P-Ser-OPN for calvarial implants. Data for subcutaneous implants failed to provide such correlation. Overall, the present work demonstrates that the natural biological progression of the process of biomineralization follows strict criteria consistent with the anatomical location. Biomineralization fails to proceed in the same way in a soft tissue environment.
Full Text
The Full Text of this article is available as a PDF (246.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boskey A. L., Maresca M., Ullrich W., Doty S. B., Butler W. T., Prince C. W. Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner. 1993 Aug;22(2):147–159. doi: 10.1016/s0169-6009(08)80225-5. [DOI] [PubMed] [Google Scholar]
- Chambers T. J., Fuller K., Darby J. A., Pringle J. A., Horton M. A. Monoclonal antibodies against osteoclasts inhibit bone resorption in vitro. Bone Miner. 1986 Apr;1(2):127–135. [PubMed] [Google Scholar]
- Decup F., Six N., Palmier B., Buch D., Lasfargues J. J., Salih E., Goldberg M. Bone sialoprotein-induced reparative dentinogenesis in the pulp of rat's molar. Clin Oral Investig. 2000 Jun;4(2):110–119. doi: 10.1007/s007840050126. [DOI] [PubMed] [Google Scholar]
- Ek-Rylander B., Flores M., Wendel M., Heinegård D., Andersson G. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem. 1994 May 27;269(21):14853–14856. [PubMed] [Google Scholar]
- Fisher L. W., McBride O. W., Termine J. D., Young M. F. Human bone sialoprotein. Deduced protein sequence and chromosomal localization. J Biol Chem. 1990 Feb 5;265(4):2347–2351. [PubMed] [Google Scholar]
- Fisher L. W., Whitson S. W., Avioli L. V., Termine J. D. Matrix sialoprotein of developing bone. J Biol Chem. 1983 Oct 25;258(20):12723–12727. [PubMed] [Google Scholar]
- Franzén A., Heinegård D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J. 1985 Dec 15;232(3):715–724. doi: 10.1042/bj2320715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giachelli C. M., Bae N., Almeida M., Denhardt D. T., Alpers C. E., Schwartz S. M. Osteopontin is elevated during neointima formation in rat arteries and is a novel component of human atherosclerotic plaques. J Clin Invest. 1993 Oct;92(4):1686–1696. doi: 10.1172/JCI116755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glimcher M. J., Kossiva D., Roufosse A. Identification of phosphopeptides and gamma-carboxyglutamic acid-containing peptides in epiphyseal growth plate cartilage. Calcif Tissue Int. 1979 Apr 17;27(2):187–191. doi: 10.1007/BF02441183. [DOI] [PubMed] [Google Scholar]
- Glimcher M. J. Mechanism of calcification: role of collagen fibrils and collagen-phosphoprotein complexes in vitro and in vivo. Anat Rec. 1989 Jun;224(2):139–153. doi: 10.1002/ar.1092240205. [DOI] [PubMed] [Google Scholar]
- Glimcher M. J. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):479–508. doi: 10.1098/rstb.1984.0041. [DOI] [PubMed] [Google Scholar]
- Goldberg M., Six N., Decup F., Buch D., Soheili Majd E., Lasfargues J. J., Salih E., Stanislawski L. Application of bioactive molecules in pulp-capping situations. Adv Dent Res. 2001 Aug;15:91–95. doi: 10.1177/08959374010150012401. [DOI] [PubMed] [Google Scholar]
- Harris N. L., Rattray K. R., Tye C. E., Underhill T. M., Somerman M. J., D'Errico J. A., Chambers A. F., Hunter G. K., Goldberg H. A. Functional analysis of bone sialoprotein: identification of the hydroxyapatite-nucleating and cell-binding domains by recombinant peptide expression and site-directed mutagenesis. Bone. 2000 Dec;27(6):795–802. doi: 10.1016/s8756-3282(00)00392-6. [DOI] [PubMed] [Google Scholar]
- Helfrich M. H., Nesbitt S. A., Dorey E. L., Horton M. A. Rat osteoclasts adhere to a wide range of RGD (Arg-Gly-Asp) peptide-containing proteins, including the bone sialoproteins and fibronectin, via a beta 3 integrin. J Bone Miner Res. 1992 Mar;7(3):335–343. doi: 10.1002/jbmr.5650070314. [DOI] [PubMed] [Google Scholar]
- Horton M. A., Taylor M. L., Arnett T. R., Helfrich M. H. Arg-Gly-Asp (RGD) peptides and the anti-vitronectin receptor antibody 23C6 inhibit dentine resorption and cell spreading by osteoclasts. Exp Cell Res. 1991 Aug;195(2):368–375. doi: 10.1016/0014-4827(91)90386-9. [DOI] [PubMed] [Google Scholar]
- Hunter G. K., Goldberg H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8562–8565. doi: 10.1073/pnas.90.18.8562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda T., Shirasawa T., Esaki Y., Yoshiki S., Hirokawa K. Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta. J Clin Invest. 1993 Dec;92(6):2814–2820. doi: 10.1172/JCI116901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jono S., Peinado C., Giachelli C. M. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J Biol Chem. 2000 Jun 30;275(26):20197–20203. doi: 10.1074/jbc.M909174199. [DOI] [PubMed] [Google Scholar]
- Kohri K., Nomura S., Kitamura Y., Nagata T., Yoshioka K., Iguchi M., Yamate T., Umekawa T., Suzuki Y., Sinohara H. Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J Biol Chem. 1993 Jul 15;268(20):15180–15184. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lian J. B., Cohen-Solal L., Kossiva D., Glimcher M. J. Changes in phosphoproteins of chicken bone matrix in vitamin D-deficient rickets. FEBS Lett. 1982 Nov 22;149(1):123–125. doi: 10.1016/0014-5793(82)81085-5. [DOI] [PubMed] [Google Scholar]
- Mark M. P., Prince C. W., Gay S., Austin R. L., Butler W. T. 44-kDal bone phosphoprotein (osteopontin) antigenicity at ectopic sites in newborn rats: kidney and nervous tissues. Cell Tissue Res. 1988 Jan;251(1):23–30. doi: 10.1007/BF00215443. [DOI] [PubMed] [Google Scholar]
- Mikuni-Takagaki Y., Glimcher M. J. Post-translational processing of chicken bone phosphoproteins. Identification of the bone phosphoproteins of embryonic tibia. Biochem J. 1990 Jun 15;268(3):585–591. doi: 10.1042/bj2680585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oldberg A., Franzén A., Heinegård D. The primary structure of a cell-binding bone sialoprotein. J Biol Chem. 1988 Dec 25;263(36):19430–19432. [PubMed] [Google Scholar]
- Reddi A. H., Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1601–1605. doi: 10.1073/pnas.69.6.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinholt F. P., Hultenby K., Oldberg A., Heinegård D. Osteopontin--a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4473–4475. doi: 10.1073/pnas.87.12.4473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salih E., Ashkar S., Gerstenfeld L. C., Glimcher M. J. Identification of the phosphorylated sites of metabolically 32P-labeled osteopontin from cultured chicken osteoblasts. J Biol Chem. 1997 May 23;272(21):13966–13973. doi: 10.1074/jbc.272.21.13966. [DOI] [PubMed] [Google Scholar]
- Salih E., Ashkar S., Gerstenfeld L. C., Glimcher M. J. Protein kinases of cultured osteoblasts: selectivity for the extracellular matrix proteins of bone and their catalytic competence for osteopontin. J Bone Miner Res. 1996 Oct;11(10):1461–1473. doi: 10.1002/jbmr.5650111013. [DOI] [PubMed] [Google Scholar]
- Salih E., Zhou H. Y., Glimcher M. J. Phosphorylation of purified bovine bone sialoprotein and osteopontin by protein kinases. J Biol Chem. 1996 Jul 12;271(28):16897–16905. doi: 10.1074/jbc.271.28.16897. [DOI] [PubMed] [Google Scholar]
- Seyer J. M., Glimcher M. J. The isolation of phosphorylated polypeptide components of the organic matrix of embryonic bovine enamel. Biochim Biophys Acta. 1971 Apr 27;236(1):279–291. doi: 10.1016/0005-2795(71)90177-2. [DOI] [PubMed] [Google Scholar]
- Sørensen E. S., Højrup P., Petersen T. E. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites. Protein Sci. 1995 Oct;4(10):2040–2049. doi: 10.1002/pro.5560041009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Veis A., Spector A. R., Zamoscianyk H. The isolation of an EDTA-soluble phosphoprotein from mineralizing bovine dentin. Biochim Biophys Acta. 1972 Feb 29;257(2):404–413. doi: 10.1016/0005-2795(72)90293-0. [DOI] [PubMed] [Google Scholar]
- Wang J., Glimcher M. J. Characterization of matrix-induced osteogenesis in rat calvarial bone defects: I. Differences in the cellular response to demineralized bone matrix implanted in calvarial defects and in subcutaneous sites. Calcif Tissue Int. 1999 Aug;65(2):156–165. doi: 10.1007/s002239900676. [DOI] [PubMed] [Google Scholar]
- Wang J., Glimcher M. J., Mah J., Zhou H. Y., Salih E. Expression of bone microsomal casein kinase II, bone sialoprotein, and osteopontin during the repair of calvarial defects. Bone. 1998 Jun;22(6):621–628. doi: 10.1016/s8756-3282(98)00057-x. [DOI] [PubMed] [Google Scholar]
- Zhou H. Y., Takita H., Fujisawa R., Mizuno M., Kuboki Y. Stimulation by bone sialoprotein of calcification in osteoblast-like MC3T3-E1 cells. Calcif Tissue Int. 1995 May;56(5):403–407. doi: 10.1007/BF00301610. [DOI] [PubMed] [Google Scholar]