Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 1;364(Pt 2):517–525. doi: 10.1042/BJ20011696

IgA Fc receptor (FcalphaR) cross-linking recruits tyrosine kinases, phosphoinositide kinases and serine/threonine kinases to glycolipid rafts.

Mark L Lang 1, Yih-Wen Chen 1, Li Shen 1, Hong Gao 1, Gillian A Lang 1, Terri K Wade 1, William F Wade 1
PMCID: PMC1222597  PMID: 12023895

Abstract

The human IgA Fc receptor (FcalphaR, CD89) triggers several important physiological functions, including phagocytosis, NADPH oxidase activation and antigen presentation. Efforts are underway to delineate FcalphaR signal-transduction pathways that control these functions. In a previous study, we demonstrated that cross-linking of FcalphaR increased its partitioning into membrane glycolipid rafts and was accompanied by gamma-chain-dependent recruitment and phosphorylation of the tyrosine kinases Lck/Yes-related novel protein tyrosine kinase (Lyn) and Bruton's tyrosine kinase (Btk). Here we have performed a more extensive characterization of signalling effectors recruited to rafts on FcalphaR cross-linking. We demonstrate that in addition to tyrosine kinases Lyn and Btk, FcalphaR cross-linking also recruits B-lymphocyte kinase (Blk) and spleen tyrosine kinase (Syk) to rafts. We show recruitment of phosphoinositide kinases, including 3-phosphoinositide 3-kinase and phospholipase Cgamma2, and serine/threonine kinases such as protein kinase C (PKC) alpha, PKCepsilon, and protein kinase B (PKB) alpha. This suggests that lipid rafts serve as sites for FcalphaR-triggered recruitment of multiple classes of signalling effectors. We further demonstrate that tyrosine kinases and PKCalpha have a sustained association with rafts, whereas phosphoinositide 3-kinase and its downstream effectors have a transient association with rafts. This is consistent with temporally regulated divergence of FcalphaR signalling pathways in rafts. Furthermore, we suggest the spatial separation of signalling effectors by transport of phosphoinositide 3-kinase, phosphoinositide-dependent kinase 1, PKBalpha and PKCepsilon to endocytic compartments containing internalized FcalphaR.

Full Text

The Full Text of this article is available as a PDF (321.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amigorena S., Bonnerot C. Fc receptor signaling and trafficking: a connection for antigen processing. Immunol Rev. 1999 Dec;172:279–284. doi: 10.1111/j.1600-065x.1999.tb01372.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. E., Lipp P., Bootman M., Ridley S. H., Coadwell J., Rönnstrand L., Lennartsson J., Holmes A. B., Painter G. F., Thuring J. DAPP1 undergoes a PI 3-kinase-dependent cycle of plasma-membrane recruitment and endocytosis upon cell stimulation. Curr Biol. 2000 Nov 16;10(22):1403–1412. doi: 10.1016/s0960-9822(00)00794-6. [DOI] [PubMed] [Google Scholar]
  3. Cantrell D. A. Phosphoinositide 3-kinase signalling pathways. J Cell Sci. 2001 Apr;114(Pt 8):1439–1445. doi: 10.1242/jcs.114.8.1439. [DOI] [PubMed] [Google Scholar]
  4. Chan T. O., Rittenhouse S. E., Tsichlis P. N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem. 1999;68:965–1014. doi: 10.1146/annurev.biochem.68.1.965. [DOI] [PubMed] [Google Scholar]
  5. Cheng P. C., Dykstra M. L., Mitchell R. N., Pierce S. K. A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J Exp Med. 1999 Dec 6;190(11):1549–1560. doi: 10.1084/jem.190.11.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christoforidis S., McBride H. M., Burgoyne R. D., Zerial M. The Rab5 effector EEA1 is a core component of endosome docking. Nature. 1999 Feb 18;397(6720):621–625. doi: 10.1038/17618. [DOI] [PubMed] [Google Scholar]
  7. Cuevas B. D., Lu Y., Mao M., Zhang J., LaPushin R., Siminovitch K., Mills G. B. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem. 2001 May 3;276(29):27455–27461. doi: 10.1074/jbc.M100556200. [DOI] [PubMed] [Google Scholar]
  8. Field K. A., Holowka D., Baird B. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J Biol Chem. 1997 Feb 14;272(7):4276–4280. doi: 10.1074/jbc.272.7.4276. [DOI] [PubMed] [Google Scholar]
  9. Field K. A., Holowka D., Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9201–9205. doi: 10.1073/pnas.92.20.9201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fluckiger A. C., Li Z., Kato R. M., Wahl M. I., Ochs H. D., Longnecker R., Kinet J. P., Witte O. N., Scharenberg A. M., Rawlings D. J. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 1998 Apr 1;17(7):1973–1985. doi: 10.1093/emboj/17.7.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Flück M., Zürcher G., Andres A. C., Ziemiecki A. Molecular characterization of the murine syk protein tyrosine kinase cDNA, transcripts and protein. Biochem Biophys Res Commun. 1995 Aug 4;213(1):273–281. doi: 10.1006/bbrc.1995.2126. [DOI] [PubMed] [Google Scholar]
  12. Fra A. M., Williamson E., Simons K., Parton R. G. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem. 1994 Dec 9;269(49):30745–30748. [PubMed] [Google Scholar]
  13. Funk W. D., MacGillivray R. T., Mason A. B., Brown S. A., Woodworth R. C. Expression of the amino-terminal half-molecule of human serum transferrin in cultured cells and characterization of the recombinant protein. Biochemistry. 1990 Feb 13;29(6):1654–1660. doi: 10.1021/bi00458a043. [DOI] [PubMed] [Google Scholar]
  14. Gulle H., Samstag A., Eibl M. M., Wolf H. M. Physical and functional association of Fc alpha R with protein tyrosine kinase Lyn. Blood. 1998 Jan 15;91(2):383–391. [PubMed] [Google Scholar]
  15. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  16. Hibbs M. L., Dunn A. R. Lyn, a src-like tyrosine kinase. Int J Biochem Cell Biol. 1997 Mar;29(3):397–400. doi: 10.1016/s1357-2725(96)00104-5. [DOI] [PubMed] [Google Scholar]
  17. Jacobson K., Dietrich C. Looking at lipid rafts? Trends Cell Biol. 1999 Mar;9(3):87–91. doi: 10.1016/s0962-8924(98)01495-0. [DOI] [PubMed] [Google Scholar]
  18. Jones B., Tite J. P., Janeway C. A., Jr Different phenotypic variants of the mouse B cell tumor A20/2J are selected by antigen- and mitogen-triggered cytotoxicity of L3T4-positive, I-A-restricted T cell clones. J Immunol. 1986 Jan;136(1):348–356. [PubMed] [Google Scholar]
  19. Jouvin M. H., Adamczewski M., Numerof R., Letourneur O., Vallé A., Kinet J. P. Differential control of the tyrosine kinases Lyn and Syk by the two signaling chains of the high affinity immunoglobulin E receptor. J Biol Chem. 1994 Feb 25;269(8):5918–5925. [PubMed] [Google Scholar]
  20. Kerr M. A., Stewart W. W., Bonner B. C., Greer M. R., MacKenzie S. J., Steele M. G. The diversity of leucocyte IgA receptors. Contrib Nephrol. 1995;111:60–65. doi: 10.1159/000423878. [DOI] [PubMed] [Google Scholar]
  21. Kerr M. A. The structure and function of human IgA. Biochem J. 1990 Oct 15;271(2):285–296. doi: 10.1042/bj2710285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lang M. L., Kerr M. A. Characterization of FcalphaR-triggered Ca(2+) signals: role in neutrophil NADPH oxidase activation. Biochem Biophys Res Commun. 2000 Sep 24;276(2):749–755. doi: 10.1006/bbrc.2000.3542. [DOI] [PubMed] [Google Scholar]
  23. Lang M. L., Shen L., Gao H., Cusack W. F., Lang G. A., Wade W. F. Fc alpha receptor cross-linking causes translocation of phosphatidylinositol-dependent protein kinase 1 and protein kinase B alpha to MHC class II peptide-loading-like compartments. J Immunol. 2001 May 1;166(9):5585–5593. doi: 10.4049/jimmunol.166.9.5585. [DOI] [PubMed] [Google Scholar]
  24. Lang M. L., Shen L., Wade W. F. Gamma-chain dependent recruitment of tyrosine kinases to membrane rafts by the human IgA receptor Fc alpha R. J Immunol. 1999 Nov 15;163(10):5391–5398. [PubMed] [Google Scholar]
  25. Lara M., Ortega E., Pecht I., Pfeiffer J. R., Martinez A. M., Lee R. J., Surviladze Z., Wilson B. S., Oliver J. M. Overcoming the signaling defect of Lyn-sequestering, signal-curtailing FcepsilonRI dimers: aggregated dimers can dissociate from Lyn and form signaling complexes with Syk. J Immunol. 2001 Oct 15;167(8):4329–4337. doi: 10.4049/jimmunol.167.8.4329. [DOI] [PubMed] [Google Scholar]
  26. Launay P., Lehuen A., Kawakami T., Blank U., Monteiro R. C. IgA Fc receptor (CD89) activation enables coupling to syk and Btk tyrosine kinase pathways: differential signaling after IFN-gamma or phorbol ester stimulation. J Leukoc Biol. 1998 May;63(5):636–642. doi: 10.1002/jlb.63.5.636. [DOI] [PubMed] [Google Scholar]
  27. Launay P., Patry C., Lehuen A., Pasquier B., Blank U., Monteiro R. C. Alternative endocytic pathway for immunoglobulin A Fc receptors (CD89) depends on the lack of FcRgamma association and protects against degradation of bound ligand. J Biol Chem. 1999 Mar 12;274(11):7216–7225. doi: 10.1074/jbc.274.11.7216. [DOI] [PubMed] [Google Scholar]
  28. Le Good J. A., Ziegler W. H., Parekh D. B., Alessi D. R., Cohen P., Parker P. J. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science. 1998 Sep 25;281(5385):2042–2045. doi: 10.1126/science.281.5385.2042. [DOI] [PubMed] [Google Scholar]
  29. Liu Y., Casey L., Pike L. J. Compartmentalization of phosphatidylinositol 4,5-bisphosphate in low-density membrane domains in the absence of caveolin. Biochem Biophys Res Commun. 1998 Apr 28;245(3):684–690. doi: 10.1006/bbrc.1998.8329. [DOI] [PubMed] [Google Scholar]
  30. Maliszewski C. R., March C. J., Schoenborn M. A., Gimpel S., Shen L. Expression cloning of a human Fc receptor for IgA. J Exp Med. 1990 Dec 1;172(6):1665–1672. doi: 10.1084/jem.172.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. McPherson P. S., Kay B. K., Hussain N. K. Signaling on the endocytic pathway. Traffic. 2001 Jun;2(6):375–384. doi: 10.1034/j.1600-0854.2001.002006375.x. [DOI] [PubMed] [Google Scholar]
  32. Moriya S., Kazlauskas A., Akimoto K., Hirai S., Mizuno K., Takenawa T., Fukui Y., Watanabe Y., Ozaki S., Ohno S. Platelet-derived growth factor activates protein kinase C epsilon through redundant and independent signaling pathways involving phospholipase C gamma or phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):151–155. doi: 10.1073/pnas.93.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Morton H. C., van Egmond M., van de Winkel J. G. Structure and function of human IgA Fc receptors (Fc alpha R). Crit Rev Immunol. 1996;16(4):423–440. [PubMed] [Google Scholar]
  34. Morton H. C., van den Herik-Oudijk I. E., Vossebeld P., Snijders A., Verhoeven A. J., Capel P. J., van de Winkel J. G. Functional association between the human myeloid immunoglobulin A Fc receptor (CD89) and FcR gamma chain. Molecular basis for CD89/FcR gamma chain association. J Biol Chem. 1995 Dec 15;270(50):29781–29787. doi: 10.1074/jbc.270.50.29781. [DOI] [PubMed] [Google Scholar]
  35. Newton A. C. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995 Dec 1;270(48):28495–28498. doi: 10.1074/jbc.270.48.28495. [DOI] [PubMed] [Google Scholar]
  36. Park R. K., Izadi K. D., Deo Y. M., Durden D. L. Role of Src in the modulation of multiple adaptor proteins in FcalphaRI oxidant signaling. Blood. 1999 Sep 15;94(6):2112–2120. [PubMed] [Google Scholar]
  37. Pfefferkorn L. C., Yeaman G. R. Association of IgA-Fc receptors (Fc alpha R) with Fc epsilon RI gamma 2 subunits in U937 cells. Aggregation induces the tyrosine phosphorylation of gamma 2. J Immunol. 1994 Oct 1;153(7):3228–3236. [PubMed] [Google Scholar]
  38. Ravetch J. V., Kinet J. P. Fc receptors. Annu Rev Immunol. 1991;9:457–492. doi: 10.1146/annurev.iy.09.040191.002325. [DOI] [PubMed] [Google Scholar]
  39. Rhee S. G., Bae Y. S. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem. 1997 Jun 13;272(24):15045–15048. doi: 10.1074/jbc.272.24.15045. [DOI] [PubMed] [Google Scholar]
  40. Shen L., Lasser R., Fanger M. W. My 43, a monoclonal antibody that reacts with human myeloid cells inhibits monocyte IgA binding and triggers function. J Immunol. 1989 Dec 15;143(12):4117–4122. [PubMed] [Google Scholar]
  41. Shen L. Receptors for IgA on phagocytic cells. Immunol Res. 1992;11(3-4):273–282. doi: 10.1007/BF02919133. [DOI] [PubMed] [Google Scholar]
  42. Shen L., van Egmond M., Siemasko K., Gao H., Wade T., Lang M. L., Clark M., van De Winkel J. G., Wade W. F. Presentation of ovalbumin internalized via the immunoglobulin-A Fc receptor is enhanced through Fc receptor gamma-chain signaling. Blood. 2001 Jan 1;97(1):205–213. doi: 10.1182/blood.v97.1.205. [DOI] [PubMed] [Google Scholar]
  43. Siemasko K., Eisfelder B. J., Williamson E., Kabak S., Clark M. R. Cutting edge: signals from the B lymphocyte antigen receptor regulate MHC class II containing late endosomes. J Immunol. 1998 Jun 1;160(11):5203–5208. [PubMed] [Google Scholar]
  44. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  45. Simonsen A., Lippé R., Christoforidis S., Gaullier J. M., Brech A., Callaghan J., Toh B. H., Murphy C., Zerial M., Stenmark H. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature. 1998 Jul 30;394(6692):494–498. doi: 10.1038/28879. [DOI] [PubMed] [Google Scholar]
  46. Smith A. J., Surviladze Z., Gaudet E. A., Backer J. M., Mitchell C. A., Wilson B. S. p110beta and p110delta phosphatidylinositol 3-kinases up-regulate Fc(epsilon)RI-activated Ca2+ influx by enhancing inositol 1,4,5-trisphosphate production. J Biol Chem. 2001 Feb 15;276(20):17213–17220. doi: 10.1074/jbc.M100417200. [DOI] [PubMed] [Google Scholar]
  47. Sue-A-Quan A. K., Fialkow L., Vlahos C. J., Schelm J. A., Grinstein S., Butler J., Downey G. P. Inhibition of neutrophil oxidative burst and granule secretion by wortmannin: potential role of MAP kinase and renaturable kinases. J Cell Physiol. 1997 Jul;172(1):94–108. doi: 10.1002/(SICI)1097-4652(199707)172:1<94::AID-JCP11>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  48. Tabata H., Matsuoka T., Endo F., Nishimura Y., Matsushita S. Ligation of HLA-DR molecules on B cells induces enhanced expression of IgM heavy chain genes in association with Syk activation. J Biol Chem. 2000 Nov 10;275(45):34998–35005. doi: 10.1074/jbc.M002089200. [DOI] [PubMed] [Google Scholar]
  49. Varma R., Mayor S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 1998 Aug 20;394(6695):798–801. doi: 10.1038/29563. [DOI] [PubMed] [Google Scholar]
  50. Viola A., Schroeder S., Sakakibara Y., Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science. 1999 Jan 29;283(5402):680–682. doi: 10.1126/science.283.5402.680. [DOI] [PubMed] [Google Scholar]
  51. Wang B. H., Lu Z. X., Polya G. M. Inhibition of eukaryote serine/threonine-specific protein kinases by piceatannol. Planta Med. 1998 Apr;64(3):195–199. doi: 10.1055/s-2006-957407. [DOI] [PubMed] [Google Scholar]
  52. Wilson B. S., Pfeiffer J. R., Oliver J. M. Observing FcepsilonRI signaling from the inside of the mast cell membrane. J Cell Biol. 2000 May 29;149(5):1131–1142. doi: 10.1083/jcb.149.5.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES