Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 1;364(Pt 2):563–570. doi: 10.1042/BJ20011756

Activation of mouse Pi-class glutathione S-transferase gene by Nrf2(NF-E2-related factor 2) and androgen.

Hiromi Ikeda 1, Mohamed S Serria 1, Ikuko Kakizaki 1, Ichiro Hatayama 1, Kimihiko Satoh 1, Shigeki Tsuchida 1, Masami Muramatsu 1, Shinzo Nishi 1, Masaharu Sakai 1
PMCID: PMC1222602  PMID: 12023900

Abstract

The Pi-class glutathione S-transferases (GSTs) play pivotal roles in the detoxification of xenobiotics, carcinogenesis and drug resistance. The mechanisms of regulation of these genes during drug induction and carcinogenesis are yet to be elucidated. Recently, Nrf2 (NF-E2-related factor 2; a bZip-type transcription factor) knockout mice were shown to display impaired induction of Pi-class GST genes by drugs. It is known that the mouse Pi-class GST gene GST-P1 is expressed predominantly in the male liver, and is regulated by androgen. To determine whether Nrf2 and the androgen receptor regulate GST-P1 directly, we analysed the molecular mechanism of activation of this gene by these factors. The promoter of the GST-P1 gene was activated markedly by Nrf2 in transient transfection analyses. Gel mobility shift assay and footprinting analyses revealed three Nrf2 binding sites: one at the proximal and two at distal elements, located at positions -59, -915 and -937 from the cap site. The fifth intron of the GST-P1 gene contains the androgen-responsive region. Multiple androgen receptor binding sites are clustered within a 500 bp region of this intron. The whole fragment contains a minimum of seven androgen receptor binding sites, which collectively display strong androgen-dependent enhancer activity. However, on division into small fragments containing two or three elements each, individual enhancer activities were dramatically decreased. This suggests that multiple elements work synergistically as a strong androgen-responsive enhancer. Our findings indicate that Nrf2 and the androgen receptor directly bind to and activate the mouse GST-P1 gene.

Full Text

The Full Text of this article is available as a PDF (262.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews N. C., Erdjument-Bromage H., Davidson M. B., Tempst P., Orkin S. H. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature. 1993 Apr 22;362(6422):722–728. doi: 10.1038/362722a0. [DOI] [PubMed] [Google Scholar]
  2. Andrews N. C., Kotkow K. J., Ney P. A., Erdjument-Bromage H., Tempst P., Orkin S. H. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11488–11492. doi: 10.1073/pnas.90.24.11488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bammler T. K., Smith C. A., Wolf C. R. Isolation and characterization of two mouse Pi-class glutathione S-transferase genes. Biochem J. 1994 Mar 1;298(Pt 2):385–390. doi: 10.1042/bj2980385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black S. M., Wolf C. R. The role of glutathione-dependent enzymes in drug resistance. Pharmacol Ther. 1991;51(1):139–154. doi: 10.1016/0163-7258(91)90044-m. [DOI] [PubMed] [Google Scholar]
  5. Chen C., Okayama H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol. 1987 Aug;7(8):2745–2752. doi: 10.1128/mcb.7.8.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chui D. H., Tang W., Orkin S. H. cDNA cloning of murine Nrf 2 gene, coding for a p45 NF-E2 related transcription factor. Biochem Biophys Res Commun. 1995 Apr 6;209(1):40–46. doi: 10.1006/bbrc.1995.1467. [DOI] [PubMed] [Google Scholar]
  7. Claessens F., Verrijdt G., Schoenmakers E., Haelens A., Peeters B., Verhoeven G., Rombauts W. Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation. J Steroid Biochem Mol Biol. 2001 Jan-Mar;76(1-5):23–30. doi: 10.1016/s0960-0760(00)00154-0. [DOI] [PubMed] [Google Scholar]
  8. Dhakshinamoorthy S., Jaiswal A. K. Small maf (MafG and MafK) proteins negatively regulate antioxidant response element-mediated expression and antioxidant induction of the NAD(P)H:Quinone oxidoreductase1 gene. J Biol Chem. 2000 Dec 22;275(51):40134–40141. doi: 10.1074/jbc.M003531200. [DOI] [PubMed] [Google Scholar]
  9. Farber E. The biochemistry of preneoplastic liver: a common metabolic pattern in hepatocyte nodules. Can J Biochem Cell Biol. 1984 Jun;62(6):486–494. doi: 10.1139/o84-066. [DOI] [PubMed] [Google Scholar]
  10. Favreau L. V., Pickett C. B. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Identification of regulatory elements controlling basal level expression and inducible expression by planar aromatic compounds and phenolic antioxidants. J Biol Chem. 1991 Mar 5;266(7):4556–4561. [PubMed] [Google Scholar]
  11. Fujiwara K. T., Kataoka K., Nishizawa M. Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene. 1993 Sep;8(9):2371–2380. [PubMed] [Google Scholar]
  12. Gunning P., Leavitt J., Muscat G., Ng S. Y., Kedes L. A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4831–4835. doi: 10.1073/pnas.84.14.4831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hatayama I., Nishimura S., Narita T., Sato K. Sex-dependent expression of class pi glutathione S-transferase during chemical hepatocarcinogenesis in B6C3F1 mice. Carcinogenesis. 1993 Mar;14(3):537–538. doi: 10.1093/carcin/14.3.537. [DOI] [PubMed] [Google Scholar]
  14. Hatayama I., Satoh K., Sato K. A cDNA sequence coding a class pi glutathione S-transferase of mouse. Nucleic Acids Res. 1990 Aug 11;18(15):4606–4606. doi: 10.1093/nar/18.15.4606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hatayama I., Satoh K., Sato K. Developmental and hormonal regulation of the major form of hepatic glutathione S-transferase in male mice. Biochem Biophys Res Commun. 1986 Oct 30;140(2):581–588. doi: 10.1016/0006-291x(86)90771-0. [DOI] [PubMed] [Google Scholar]
  16. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  17. Itoh K., Chiba T., Takahashi S., Ishii T., Igarashi K., Katoh Y., Oyake T., Hayashi N., Satoh K., Hatayama I. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997 Jul 18;236(2):313–322. doi: 10.1006/bbrc.1997.6943. [DOI] [PubMed] [Google Scholar]
  18. Itoh K., Wakabayashi N., Katoh Y., Ishii T., Igarashi K., Engel J. D., Yamamoto M. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999 Jan 1;13(1):76–86. doi: 10.1101/gad.13.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kasper S., Rennie P. S., Bruchovsky N., Sheppard P. C., Cheng H., Lin L., Shiu R. P., Snoek R., Matusik R. J. Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene. J Biol Chem. 1994 Dec 16;269(50):31763–31769. [PubMed] [Google Scholar]
  20. Kato S., Tora L., Yamauchi J., Masushige S., Bellard M., Chambon P. A far upstream estrogen response element of the ovalbumin gene contains several half-palindromic 5'-TGACC-3' motifs acting synergistically. Cell. 1992 Feb 21;68(4):731–742. doi: 10.1016/0092-8674(92)90148-6. [DOI] [PubMed] [Google Scholar]
  21. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  22. Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
  23. Moi P., Chan K., Asunis I., Cao A., Kan Y. W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9926–9930. doi: 10.1073/pnas.91.21.9926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morimura S., Suzuki T., Hochi S., Yuki A., Nomura K., Kitagawa T., Nagatsu I., Imagawa M., Muramatsu M. Trans-activation of glutathione transferase P gene during chemical hepatocarcinogenesis of the rat. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):2065–2068. doi: 10.1073/pnas.90.5.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Motohashi H., Katsuoka F., Shavit J. A., Engel J. D., Yamamoto M. Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell. 2000 Dec 8;103(6):865–875. doi: 10.1016/s0092-8674(00)00190-2. [DOI] [PubMed] [Google Scholar]
  26. Nguyen T., Huang H. C., Pickett C. B. Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem. 2000 May 19;275(20):15466–15473. doi: 10.1074/jbc.M000361200. [DOI] [PubMed] [Google Scholar]
  27. Okuda A., Imagawa M., Sakai M., Muramatsu M. Functional cooperativity between two TPA responsive elements in undifferentiated F9 embryonic stem cells. EMBO J. 1990 Apr;9(4):1131–1135. doi: 10.1002/j.1460-2075.1990.tb08219.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ookawa K., Nakano H., Kakizaki I., Hatayama I., Kajihara-Kano H., Kimura J., Hayakari M., Takahata T., Satoh K., Tsuchida S. Identification of glutathione S-transferase p-1 as the class pi form dominantly expressed in mouse hepatic adenomas. Jpn J Cancer Res. 1998 Jun;89(6):641–648. doi: 10.1111/j.1349-7006.1998.tb03266.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rushmore T. H., Pickett C. B. Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem. 1993 Jun 5;268(16):11475–11478. [PubMed] [Google Scholar]
  30. Sakai M., Okuda A., Muramatsu M. Multiple regulatory elements and phorbol 12-O-tetradecanoate 13-acetate responsiveness of the rat placental glutathione transferase gene. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9456–9460. doi: 10.1073/pnas.85.24.9456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sakai M., Serria M. S., Ikeda H., Yoshida K., Imaki J., Nishi S. Regulation of c-maf gene expression by Pax6 in cultured cells. Nucleic Acids Res. 2001 Mar 1;29(5):1228–1237. doi: 10.1093/nar/29.5.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sato K. Glutathione transferases as markers of preneoplasia and neoplasia. Adv Cancer Res. 1989;52:205–255. doi: 10.1016/s0065-230x(08)60214-6. [DOI] [PubMed] [Google Scholar]
  33. Satoh K., Kitahara A., Soma Y., Inaba Y., Hatayama I., Sato K. Purification, induction, and distribution of placental glutathione transferase: a new marker enzyme for preneoplastic cells in the rat chemical hepatocarcinogenesis. Proc Natl Acad Sci U S A. 1985 Jun;82(12):3964–3968. doi: 10.1073/pnas.82.12.3964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Suzuki T., Imagawa M., Hirabayashi M., Yuki A., Hisatake K., Nomura K., Kitagawa T., Muramatsu M. Identification of an enhancer responsible for tumor marker gene expression by means of transgenic rats. Cancer Res. 1995 Jun 15;55(12):2651–2655. [PubMed] [Google Scholar]
  35. Watanabe T., Inoue S., Hiroi H., Orimo A., Muramatsu M. NMDA receptor type 2D gene as target for estrogen receptor in the brain. Brain Res Mol Brain Res. 1999 Jan 8;63(2):375–379. doi: 10.1016/s0169-328x(98)00304-0. [DOI] [PubMed] [Google Scholar]
  36. Xu X., Stambrook P. J. Two murine GSTpi genes are arranged in tandem and are differentially expressed. J Biol Chem. 1994 Dec 2;269(48):30268–30273. [PubMed] [Google Scholar]
  37. Zhou Z., Corden J. L., Brown T. R. Identification and characterization of a novel androgen response element composed of a direct repeat. J Biol Chem. 1997 Mar 28;272(13):8227–8235. doi: 10.1074/jbc.272.13.8227. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES