Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):613–616. doi: 10.1042/BJ20020500

Expression and purification of functional recombinant meningococcal transferrin-binding protein A.

Jonathan S Oakhill 1, Christopher L Joannou 1, Susan K Buchanan 1, Andrew R Gorringe 1, Robert W Evans 1
PMCID: PMC1222609  PMID: 11972452

Abstract

Pathogenic bacteria of the genus Neisseria have a siderophore-independent iron-uptake system reliant on a direct interaction between the bacterial cell and human transferrin (hTf), a serum protein. In the meningococcus, this uptake system is dependent on two surface-exposed, transferrin-binding proteins (Tbps), TbpA and TbpB. TbpA is highly conserved among meningococcal strains, and is thought to be a porin-like integral protein that functions as a gated channel for the passage of iron into the periplasm. TbpB is more variable in size, lipidated and fully surface-exposed. Given its location on the cell surface, its role in pathogenicity and interstrain sequence conservation, TbpA is currently being regarded for inclusion in a meningococcal vaccine effective against all serogroups. This requires gaining knowledge of the ligand-receptor interactions. In the present study we have optimized a procedure for obtaining purified, functionally active recombinant TbpA at a level and stability necessary for the initiation of such studies.

Full Text

The Full Text of this article is available as a PDF (117.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ala'Aldeen D. A., Stevenson P., Griffiths E., Gorringe A. R., Irons L. I., Robinson A., Hyde S., Borriello S. P. Immune responses in humans and animals to meningococcal transferrin-binding proteins: implications for vaccine design. Infect Immun. 1994 Jul;62(7):2984–2990. doi: 10.1128/iai.62.7.2984-2990.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boulton I. C., Gorringe A. R., Allison N., Robinson A., Gorinsky B., Joannou C. L., Evans R. W. Transferrin-binding protein B isolated from Neisseria meningitidis discriminates between apo and diferric human transferrin. Biochem J. 1998 Aug 15;334(Pt 1):269–273. doi: 10.1042/bj3340269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulton I. C., Gorringe A. R., Shergill J. K., Joannou C. L., Evans R. W. A dynamic model of the meningococcal transferrin receptor. J Theor Biol. 1999 Jun 21;198(4):497–505. doi: 10.1006/jtbi.1999.0928. [DOI] [PubMed] [Google Scholar]
  4. Boulton I. C., Yost M. K., Anderson J. E., Cornelissen C. N. Identification of discrete domains within gonococcal transferrin-binding protein A that are necessary for ligand binding and iron uptake functions. Infect Immun. 2000 Dec;68(12):6988–6996. doi: 10.1128/iai.68.12.6988-6996.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buchanan S. K., Smith B. S., Venkatramani L., Xia D., Esser L., Palnitkar M., Chakraborty R., van der Helm D., Deisenhofer J. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat Struct Biol. 1999 Jan;6(1):56–63. doi: 10.1038/4931. [DOI] [PubMed] [Google Scholar]
  6. Cornelissen C. N., Biswas G. D., Sparling P. F. Expression of gonococcal transferrin-binding protein 1 causes Escherichia coli to bind human transferrin. J Bacteriol. 1993 Apr;175(8):2448–2450. doi: 10.1128/jb.175.8.2448-2450.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cornelissen C. N., Biswas G. D., Tsai J., Paruchuri D. K., Thompson S. A., Sparling P. F. Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to TonB-dependent outer membrane receptors. J Bacteriol. 1992 Sep;174(18):5788–5797. doi: 10.1128/jb.174.18.5788-5797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evans R. W., Williams J. Studies of the binding of different iron donors to human serum transferrin and isolation of iron-binding fragments from the N- and C-terminal regions of the protein. Biochem J. 1978 Aug 1;173(2):543–552. doi: 10.1042/bj1730543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferguson A. D., Hofmann E., Coulton J. W., Diederichs K., Welte W. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science. 1998 Dec 18;282(5397):2215–2220. doi: 10.1126/science.282.5397.2215. [DOI] [PubMed] [Google Scholar]
  10. Ferrón L., Ferreirós C. M., Criado M. T., Andrade M. P. Purification of the Neisseria meningitidis transferrin binding protein-2 (TBP2) to homogeneity using column chromatography. FEMS Microbiol Lett. 1993 May 15;109(2-3):159–165. doi: 10.1111/j.1574-6968.1993.tb06161.x. [DOI] [PubMed] [Google Scholar]
  11. Gonzalez G. C., Yu R. H., Rosteck P. R., Jr, Schryvers A. B. Sequence, genetic analysis, and expression of Actinobacillus pleuropneumoniae transferrin receptor genes. Microbiology. 1995 Oct;141(Pt 10):2405–2416. doi: 10.1099/13500872-141-10-2405. [DOI] [PubMed] [Google Scholar]
  12. Gray-Owen S. D., Schryvers A. B. Bacterial transferrin and lactoferrin receptors. Trends Microbiol. 1996 May;4(5):185–191. doi: 10.1016/0966-842x(96)10025-1. [DOI] [PubMed] [Google Scholar]
  13. Gray-Owen S. D., Schryvers A. B. The interaction of primate transferrins with receptors on bacteria pathogenic to humans. Microb Pathog. 1993 May;14(5):389–398. doi: 10.1006/mpat.1993.1038. [DOI] [PubMed] [Google Scholar]
  14. Irwin S. W., Averil N., Cheng C. Y., Schryvers A. B. Preparation and analysis of isogenic mutants in the transferrin receptor protein genes, tbpA and tbpB, from Neisseria meningitidis. Mol Microbiol. 1993 Jun;8(6):1125–1133. doi: 10.1111/j.1365-2958.1993.tb01657.x. [DOI] [PubMed] [Google Scholar]
  15. Legrain M., Rokbi B., Villeval D., Jacobs E. Characterization of genetic exchanges between various highly divergent tbpBs, having occurred in Neisseria meningitidis. Gene. 1998 Feb 16;208(1):51–59. doi: 10.1016/s0378-1119(97)00646-x. [DOI] [PubMed] [Google Scholar]
  16. Lissolo L., Maitre-Wilmotte G., Dumas P., Mignon M., Danve B., Quentin-Millet M. J. Evaluation of transferrin-binding protein 2 within the transferrin-binding protein complex as a potential antigen for future meningococcal vaccines. Infect Immun. 1995 Mar;63(3):884–890. doi: 10.1128/iai.63.3.884-890.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Locher K. P., Rees B., Koebnik R., Mitschler A., Moulinier L., Rosenbusch J. P., Moras D. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell. 1998 Dec 11;95(6):771–778. doi: 10.1016/s0092-8674(00)81700-6. [DOI] [PubMed] [Google Scholar]
  18. Mackinnon F. G., Borrow R., Gorringe A. R., Fox A. J., Jones D. M., Robinson A. Demonstration of lipooligosaccharide immunotype and capsule as virulence factors for Neisseria meningitidis using an infant mouse intranasal infection model. Microb Pathog. 1993 Nov;15(5):359–366. doi: 10.1006/mpat.1993.1085. [DOI] [PubMed] [Google Scholar]
  19. Pajón R., Chinea G., Marrero E., Gonzalez D., Guillén G. Sequence analysis of the structural tbpA gene: protein topology and variable regions within neisserial receptors for transferrin iron acquisition. Microb Pathog. 1997 Aug;23(2):71–84. doi: 10.1006/mpat.1997.0136. [DOI] [PubMed] [Google Scholar]
  20. Riedo F. X., Plikaytis B. D., Broome C. V. Epidemiology and prevention of meningococcal disease. Pediatr Infect Dis J. 1995 Aug;14(8):643–657. doi: 10.1097/00006454-199508000-00001. [DOI] [PubMed] [Google Scholar]
  21. Rokbi B., Mignon M., Caugant D. A., Quentin-Millet M. J. Heterogeneity of tbpB, the transferrin-binding protein B gene, among serogroup B Neisseria meningitidis strains of the ET-5 complex. Clin Diagn Lab Immunol. 1997 Sep;4(5):522–529. doi: 10.1128/cdli.4.5.522-529.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schryvers A. B., Morris L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol. 1988 Mar;2(2):281–288. doi: 10.1111/j.1365-2958.1988.tb00029.x. [DOI] [PubMed] [Google Scholar]
  23. Schryvers A. B., Stojiljkovic I. Iron acquisition systems in the pathogenic Neisseria. Mol Microbiol. 1999 Jun;32(6):1117–1123. doi: 10.1046/j.1365-2958.1999.01411.x. [DOI] [PubMed] [Google Scholar]
  24. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  25. West D., Reddin K., Matheson M., Heath R., Funnell S., Hudson M., Robinson A., Gorringe A. Recombinant Neisseria meningitidis transferrin binding protein A protects against experimental meningococcal infection. Infect Immun. 2001 Mar;69(3):1561–1567. doi: 10.1128/IAI.69.3.1561-1567.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES