Abstract
The irreversible thermal inactivation and the thermodynamics of calcium ion binding of Bacillus amyloliquefaciens alpha-amylase in the absence of substrates were studied. The enzyme inactivation on heating was apparently followed by first-order kinetics. The enzyme was stabilized with an increased concentration of calcium ion and thus the inactivation was highly dependent on the state of calcium binding. The activation parameter for the inactivation suggests an unfolding of the enzyme protein upon heating. Values of both the activation enthalpy and entropy were increased with a higher calcium ion concentration. An inactivation kinetic model is based on the assumption of a two-stage unfolding transition in which the bivalent ion dissociation occurs in the first step followed by the secondary structural unfolding. This simple kinetic model provides both a qualitative and quantitative interpretation of calcium ion binding to the enzyme and its effect on the inactivation properties. The specific approximations of the kinetic model were strictly followed in the analysis to calculate the apparent inactivation rate at each calcium ion concentration in terms of the calcium-binding parameters. The enthalpy and entropy changes for the calcium ion binding were calculated to be -149 kJ/mol and -360 J.mol(-1).K(-1) respectively and these values suggest a strong enthalpic affinity for the bivalent ion binding to the enzyme protein. The thermodynamical interpretation attempts to provide clear relations between the terms of an apparent inactivation rate and the calcium binding.
Full Text
The Full Text of this article is available as a PDF (135.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal R. P., Henkin R. I. Metal binding characteristics of human salivary and porcine pancreatic amylase. J Biol Chem. 1987 Feb 25;262(6):2568–2575. [PubMed] [Google Scholar]
- Boel E., Brady L., Brzozowski A. M., Derewenda Z., Dodson G. G., Jensen V. J., Petersen S. B., Swift H., Thim L., Woldike H. F. Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry. 1990 Jul 3;29(26):6244–6249. doi: 10.1021/bi00478a019. [DOI] [PubMed] [Google Scholar]
- Buisson G., Duée E., Haser R., Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987 Dec 20;6(13):3909–3916. doi: 10.1002/j.1460-2075.1987.tb02731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush D. S., Sticher L., van Huystee R., Wagner D., Jones R. L. The calcium requirement for stability and enzymatic activity of two isoforms of barley aleurone alpha-amylase. J Biol Chem. 1989 Nov 15;264(32):19392–19398. [PubMed] [Google Scholar]
- Chen X., Matthews C. R. Thermodynamic properties of the transition state for the rate-limiting step in the folding of the alpha subunit of tryptophan synthase. Biochemistry. 1994 May 24;33(20):6356–6362. doi: 10.1021/bi00186a040. [DOI] [PubMed] [Google Scholar]
- Elwell M. L., Schellman J. A. Stability of phage T4 lysozymes. I. Native properties and thermal stability of wild type and two mutant lysozymes. Biochim Biophys Acta. 1977 Oct 26;494(2):367–383. doi: 10.1016/0005-2795(77)90166-0. [DOI] [PubMed] [Google Scholar]
- Kadziola A., Abe J., Svensson B., Haser R. Crystal and molecular structure of barley alpha-amylase. J Mol Biol. 1994 May 27;239(1):104–121. doi: 10.1006/jmbi.1994.1354. [DOI] [PubMed] [Google Scholar]
- Keleti T. Stability, heat stability and heat sensitivity of proteins: thermodynamic considerations. Acta Biochim Biophys Acad Sci Hung. 1985;20(3-4):183–186. [PubMed] [Google Scholar]
- Kuroki R., Kawakita S., Nakamura H., Yutani K. Entropic stabilization of a mutant human lysozyme induced by calcium binding. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6803–6807. doi: 10.1073/pnas.89.15.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuroki R., Nitta K., Yutani K. Thermodynamic changes in the binding of Ca2+ to a mutant human lysozyme (D86/92). Enthalpy-entropy compensation observed upon Ca2+ binding to proteins. J Biol Chem. 1992 Dec 5;267(34):24297–24301. [PubMed] [Google Scholar]
- Lumry R., Rajender S. Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: a ubiquitous property of water. Biopolymers. 1970;9(10):1125–1227. doi: 10.1002/bip.1970.360091002. [DOI] [PubMed] [Google Scholar]
- MacGregor E. A. Alpha-amylase structure and activity. J Protein Chem. 1988 Aug;7(4):399–415. doi: 10.1007/BF01024888. [DOI] [PubMed] [Google Scholar]
- Matsuura Y., Kusunoki M., Harada W., Kakudo M. Structure and possible catalytic residues of Taka-amylase A. J Biochem. 1984 Mar;95(3):697–702. doi: 10.1093/oxfordjournals.jbchem.a134659. [DOI] [PubMed] [Google Scholar]
- Privalov P. L., Khechinashvili N. N. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974 Jul 5;86(3):665–684. doi: 10.1016/0022-2836(74)90188-0. [DOI] [PubMed] [Google Scholar]
- Stein R. A., Staros J. V. Thermal inactivation of the protein tyrosine kinase of the epidermal growth factor receptor. Biochemistry. 1996 Mar 5;35(9):2878–2884. doi: 10.1021/bi952350h. [DOI] [PubMed] [Google Scholar]
- Suzuki A., Yamane T., Ito Y., Nishio T., Fujiwara H., Ashida T. Crystallization and preliminary crystallographic study of bacterial alpha-amylases. J Biochem. 1990 Sep;108(3):379–381. doi: 10.1093/oxfordjournals.jbchem.a123209. [DOI] [PubMed] [Google Scholar]
- Suzuki Y., Ito N., Yuuki T., Yamagata H., Udaka S. Amino acid residues stabilizing a Bacillus alpha-amylase against irreversible thermoinactivation. J Biol Chem. 1989 Nov 15;264(32):18933–18938. [PubMed] [Google Scholar]
- Takkinen K., Pettersson R. F., Kalkkinen N., Palva I., Söderlund H., Käriäinen L. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J Biol Chem. 1983 Jan 25;258(2):1007–1013. [PubMed] [Google Scholar]
- Tomazic S. J., Klibanov A. M. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J Biol Chem. 1988 Mar 5;263(7):3086–3091. [PubMed] [Google Scholar]
- VALLEE B. L., STEIN E. A., SUMERWELL W. N., FISCHER E. H. Metal content of alpha-amylases of various origins. J Biol Chem. 1959 Nov;234:2901–2905. [PubMed] [Google Scholar]
- Violet M., Meunier J. C. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem J. 1989 Nov 1;263(3):665–670. doi: 10.1042/bj2630665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yuuki T., Nomura T., Tezuka H., Tsuboi A., Yamagata H., Tsukagoshi N., Udaka S. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J Biochem. 1985 Nov;98(5):1147–1156. doi: 10.1093/oxfordjournals.jbchem.a135381. [DOI] [PubMed] [Google Scholar]