Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):669–677. doi: 10.1042/BJ20011836

Human tastin, a proline-rich cytoplasmic protein, associates with the microtubular cytoskeleton.

Daita Nadano 1, Jun Nakayama 1, Shu-Ichi Matsuzawa 1, Taka-Aki Sato 1, Tsukasa Matsuda 1, Michiko N Fukuda 1
PMCID: PMC1222615  PMID: 12049630

Abstract

Tastin was originally identified as an accessory protein for trophinin, a cell adhesion molecule that potentially mediates the initial attachment of the human embryo to the uterine epithelium. However, no information regarding tastin's function is available to date. The present study is aimed at understanding the role of tastin in mammalian cells. Hence, we examined the intracellular localization of tastin in human cell lines transfected with an expression vector encoding influenza virus haemagglutinin (HA)-tagged tastin. Ectopically expressed HA-tastin was seen as a pattern resembling the fibres that overlap the microtubular cytoskeleton. When HA-tastin-expressing cells were cultured with nocodazole to disrupt microtubule (MT) polymerization, tastin was dispersed to the entire cytoplasm and an MT sedimentation assay showed tastin in the supernatant; however, tastin was sedimented with polymeric MTs in cell lysates not treated with nocodazole. Sedimentation assays using HA-tastin mutants deleted at the N- or C-terminus revealed MT-binding activity associated with the N-terminal basic region of tastin. A yeast two-hybrid screen for tastin-interacting proteins identified Tctex-1, one of the light chains of cytoplasmic dynein, as a tastin-binding protein. Immunoprecipitation and Western-blot analysis confirmed binding of HA-tagged tastin and FLAG (Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys epitope)-tagged Tctex-1 in human cells. Furthermore, in vitro assays have demonstrated the binding between a fusion protein, glutathione S-transferase-Tctex-1, and in vitro translated (35)S-labelled tastin. As Tctex-1 is a component of a MT-based molecular motor, these results suggest that tastin plays an important role in mammalian cells by associating with the microtubular cytoskeleton.

Full Text

The Full Text of this article is available as a PDF (219.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandropoulos K., Cheng G., Baltimore D. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3110–3114. doi: 10.1073/pnas.92.8.3110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baergen R. N. Gestational choriocarcinoma. Gen Diagn Pathol. 1997 Nov;143(2-3):127–141. [PubMed] [Google Scholar]
  3. Carson D. D., Bagchi I., Dey S. K., Enders A. C., Fazleabas A. T., Lessey B. A., Yoshinaga K. Embryo implantation. Dev Biol. 2000 Jul 15;223(2):217–237. doi: 10.1006/dbio.2000.9767. [DOI] [PubMed] [Google Scholar]
  4. Chausovsky A., Bershadsky A. D., Borisy G. G. Cadherin-mediated regulation of microtubule dynamics. Nat Cell Biol. 2000 Nov;2(11):797–804. doi: 10.1038/35041037. [DOI] [PubMed] [Google Scholar]
  5. Collins J. E., Fleming T. P. Epithelial differentiation in the mouse preimplantation embryo: making adhesive cell contacts for the first time. Trends Biochem Sci. 1995 Aug;20(8):307–312. doi: 10.1016/s0968-0004(00)89057-x. [DOI] [PubMed] [Google Scholar]
  6. Cross J. C., Werb Z., Fisher S. J. Implantation and the placenta: key pieces of the development puzzle. Science. 1994 Dec 2;266(5190):1508–1518. doi: 10.1126/science.7985020. [DOI] [PubMed] [Google Scholar]
  7. Desai A., Mitchison T. J. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83–117. doi: 10.1146/annurev.cellbio.13.1.83. [DOI] [PubMed] [Google Scholar]
  8. Dhanasekaran S. M., Barrette T. R., Ghosh D., Shah R., Varambally S., Kurachi K., Pienta K. J., Rubin M. A., Chinnaiyan A. M. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001 Aug 23;412(6849):822–826. doi: 10.1038/35090585. [DOI] [PubMed] [Google Scholar]
  9. Drewes G., Ebneth A., Mandelkow E. M. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci. 1998 Aug;23(8):307–311. doi: 10.1016/s0968-0004(98)01245-6. [DOI] [PubMed] [Google Scholar]
  10. Fath K. R., Trimbur G. M., Burgess D. R. Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells. J Cell Biol. 1994 Aug;126(3):661–675. doi: 10.1083/jcb.126.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fukuda M. N., Sato T., Nakayama J., Klier G., Mikami M., Aoki D., Nozawa S. Trophinin and tastin, a novel cell adhesion molecule complex with potential involvement in embryo implantation. Genes Dev. 1995 May 15;9(10):1199–1210. doi: 10.1101/gad.9.10.1199. [DOI] [PubMed] [Google Scholar]
  12. Giancotti F. G., Ruoslahti E. Integrin signaling. Science. 1999 Aug 13;285(5430):1028–1032. doi: 10.1126/science.285.5430.1028. [DOI] [PubMed] [Google Scholar]
  13. Goldstein L. S. Molecular motors: from one motor many tails to one motor many tales. Trends Cell Biol. 2001 Dec;11(12):477–482. doi: 10.1016/s0962-8924(01)02143-2. [DOI] [PubMed] [Google Scholar]
  14. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  15. King S. M. The dynein microtubule motor. Biochim Biophys Acta. 2000 Mar 17;1496(1):60–75. doi: 10.1016/s0167-4889(00)00009-4. [DOI] [PubMed] [Google Scholar]
  16. Lader E., Ha H. S., O'Neill M., Artzt K., Bennett D. tctex-1: a candidate gene family for a mouse t complex sterility locus. Cell. 1989 Sep 8;58(5):969–979. doi: 10.1016/0092-8674(89)90948-3. [DOI] [PubMed] [Google Scholar]
  17. Lukashok S. A., Tarassishin L., Li Y., Horwitz M. S. An adenovirus inhibitor of tumor necrosis factor alpha-induced apoptosis complexes with dynein and a small GTPase. J Virol. 2000 May;74(10):4705–4709. doi: 10.1128/jvi.74.10.4705-4709.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsuzawa S., Takayama S., Froesch B. A., Zapata J. M., Reed J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 1998 May 15;17(10):2736–2747. doi: 10.1093/emboj/17.10.2736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nadano D., Aoki C., Yoshinaka T., Irie S., Sato T. A. Electrophoretic characterization of ribosomal subunits and proteins in apoptosis: specific downregulation of S11 in staurosporine-treated human breast carcinoma cells. Biochemistry. 2001 Dec 18;40(50):15184–15193. doi: 10.1021/bi0108397. [DOI] [PubMed] [Google Scholar]
  20. Nadano Daita, Sugihara Kazuhiro, Paria Bibhash C., Saburi Sakura, Copeland Neal G., Gilbert Debra J., Jenkins Nancy A., Nakayama Jun, Fukuda Michiko N. Significant differences between mouse and human trophinins are revealed by their expression patterns and targeted disruption of mouse trophinin gene. Biol Reprod. 2002 Feb;66(2):313–321. doi: 10.1095/biolreprod66.2.313. [DOI] [PubMed] [Google Scholar]
  21. Nigg E. A. Cellular substrates of p34(cdc2) and its companion cyclin-dependent kinases. Trends Cell Biol. 1993 Sep;3(9):296–301. doi: 10.1016/0962-8924(93)90011-o. [DOI] [PubMed] [Google Scholar]
  22. Nikas G. Cell-surface morphological events relevant to human implantation. Hum Reprod. 1999 Dec;14 (Suppl 2):37–44. doi: 10.1093/humrep/14.suppl_2.37. [DOI] [PubMed] [Google Scholar]
  23. Näthke I. S., Adams C. L., Polakis P., Sellin J. H., Nelson W. J. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol. 1996 Jul;134(1):165–179. doi: 10.1083/jcb.134.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saburi S., Nadano D., Akama T. O., Hirama K., Yamanouchi K., Naito K., Tojo H., Tachi C., Fukuda M. N. The trophinin gene encodes a novel group of MAGE proteins, magphinins, and regulates cell proliferation during gametogenesis in the mouse. J Biol Chem. 2001 Oct 5;276(52):49378–49389. doi: 10.1074/jbc.M108584200. [DOI] [PubMed] [Google Scholar]
  25. Stournaras C., Stiakaki E., Koukouritaki S. B., Theodoropoulos P. A., Kalmanti M., Fostinis Y., Gravanis A. Altered actin polymerization dynamics in various malignant cell types: evidence for differential sensitivity to cytochalasin B. Biochem Pharmacol. 1996 Nov 8;52(9):1339–1346. doi: 10.1016/s0006-2952(96)00389-9. [DOI] [PubMed] [Google Scholar]
  26. Strickland S., Richards W. G. Invasion of the trophoblasts. Cell. 1992 Oct 30;71(3):355–357. doi: 10.1016/0092-8674(92)90503-5. [DOI] [PubMed] [Google Scholar]
  27. Suzuki N., Nadano D., Paria B. C., Kupriyanov S., Sugihara K., Fukuda M. N. Trophinin expression in the mouse uterus coincides with implantation and is hormonally regulated but not induced by implanting blastocysts. Endocrinology. 2000 Nov;141(11):4247–4254. doi: 10.1210/endo.141.11.7738. [DOI] [PubMed] [Google Scholar]
  28. Suzuki N., Nakayama J., Shih I. M., Aoki D., Nozawa S., Fukuda M. N. Expression of trophinin, tastin, and bystin by trophoblast and endometrial cells in human placenta. Biol Reprod. 1999 Mar;60(3):621–627. doi: 10.1095/biolreprod60.3.621. [DOI] [PubMed] [Google Scholar]
  29. Suzuki N., Zara J., Sato T., Ong E., Bakhiet N., Oshima R. G., Watson K. L., Fukuda M. N. A cytoplasmic protein, bystin, interacts with trophinin, tastin, and cytokeratin and may be involved in trophinin-mediated cell adhesion between trophoblast and endometrial epithelial cells. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5027–5032. doi: 10.1073/pnas.95.9.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tai A. W., Chuang J. Z., Sung C. H. Cytoplasmic dynein regulation by subunit heterogeneity and its role in apical transport. J Cell Biol. 2001 Jun 25;153(7):1499–1509. doi: 10.1083/jcb.153.7.1499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tanaka E., Ho T., Kirschner M. W. The role of microtubule dynamics in growth cone motility and axonal growth. J Cell Biol. 1995 Jan;128(1-2):139–155. doi: 10.1083/jcb.128.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vasioukhin V., Fuchs E. Actin dynamics and cell-cell adhesion in epithelia. Curr Opin Cell Biol. 2001 Feb;13(1):76–84. doi: 10.1016/s0955-0674(00)00177-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES