Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):679–686. doi: 10.1042/BJ20011370

Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata.

Sandra L Oza 1, Mark R Ariyanayagam 1, Alan H Fairlamb 1
PMCID: PMC1222616  PMID: 12049631

Abstract

Trypanothione [N1,N8-bis(glutathionyl)spermidine] is a unique metabolite found only in trypanosomatids, where it subsumes many of the functions of GSH in other organisms. In Crithidia fasciculata, two distinct ATP-dependent ligases, glutathionylspermidine synthetase (GspS; EC 6.3.1.8) and trypanothione synthetase (TryS; EC 6.3.1.9), are involved in the synthesis of trypanothione from GSH and spermidine. Both enzymes have been cloned previously, but expression in Escherichia coli produced insoluble and inactive protein. Here we report on the successful expression of soluble (His)6-tagged C. fasciculata GspS in E. coli. Following purification using nickel-chelating affinity chromatography, the tag sequence was removed and the enzyme purified to homogeneity by anion-exchange chromatography. The kinetic parameters of the recombinant enzyme have been determined using a coupled enzyme assay and also by HPLC analysis of end-product formation. Under optimal conditions (0.1 M K+-Hepes, pH 7.3) GspS has synthetase activity with apparent K(m) values for GSH, spermidine and MgATP of 242, 59 and 114 microM respectively, and a k(cat) of 15.5 s(-1). Glutathionylspermidine is formed as end product and the enzyme lacks TryS activity. Like E. coli GspS, the recombinant enzyme also possesses amidase activity (EC 3.5.1.78), hydrolysing glutathionylspermidine to GSH and spermidine with a k(cat) of 0.38 s(-1) and a K(m) of 500 microM. GspS can also hydrolyse trypanothione at about 1.5% of the rate with glutathionylspermidine. A single amino acid mutation (Cys-79-->Ala) is shown to ablate the amidase activity without affecting the synthetase activity.

Full Text

The Full Text of this article is available as a PDF (167.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ariyanayagam M. R., Fairlamb A. H. Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol Biochem Parasitol. 2001 Jul;115(2):189–198. doi: 10.1016/s0166-6851(01)00285-7. [DOI] [PubMed] [Google Scholar]
  2. Augustyns K., Amssoms K., Yamani A., Rajan P. K., Haemers A. Trypanothione as a target in the design of antitrypanosomal and antileishmanial agents. Curr Pharm Des. 2001 Aug;7(12):1117–1141. doi: 10.2174/1381612013397564. [DOI] [PubMed] [Google Scholar]
  3. Bollinger J. M., Jr, Kwon D. S., Huisman G. W., Kolter R., Walsh C. T. Glutathionylspermidine metabolism in Escherichia coli. Purification, cloning, overproduction, and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J Biol Chem. 1995 Jun 9;270(23):14031–14041. doi: 10.1074/jbc.270.23.14031. [DOI] [PubMed] [Google Scholar]
  4. Borges A., Cunningham M. L., Tovar J., Fairlamb A. H. Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase. Eur J Biochem. 1995 Mar 15;228(3):745–752. doi: 10.1111/j.1432-1033.1995.tb20319.x. [DOI] [PubMed] [Google Scholar]
  5. Datta A. K. Efficient amplification using 'megaprimer' by asymmetric polymerase chain reaction. Nucleic Acids Res. 1995 Nov 11;23(21):4530–4531. doi: 10.1093/nar/23.21.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Craecker S., Verbruggen C., Rajan P. K., Smith K., Haemers A., Fairlamb A. H. Characterization of the peptide substrate specificity of glutathionylspermidine synthetase from Crithidia fasciculata. Mol Biochem Parasitol. 1997 Jan;84(1):25–32. doi: 10.1016/s0166-6851(96)02778-8. [DOI] [PubMed] [Google Scholar]
  7. Dumas C., Ouellette M., Tovar J., Cunningham M. L., Fairlamb A. H., Tamar S., Olivier M., Papadopoulou B. Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. EMBO J. 1997 May 15;16(10):2590–2598. doi: 10.1093/emboj/16.10.2590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fairlamb A. H., Blackburn P., Ulrich P., Chait B. T., Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science. 1985 Mar 22;227(4693):1485–1487. doi: 10.1126/science.3883489. [DOI] [PubMed] [Google Scholar]
  9. Fairlamb A. H., Cerami A. Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Mol Biochem Parasitol. 1985 Feb;14(2):187–198. doi: 10.1016/0166-6851(85)90037-4. [DOI] [PubMed] [Google Scholar]
  10. Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
  11. Fairlamb A. H. Future prospects for the chemotherapy of Chagas' disease. Medicina (B Aires) 1999;59 (Suppl 2):179–187. [PubMed] [Google Scholar]
  12. Flohé L., Hecht H. J., Steinert P. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med. 1999 Nov;27(9-10):966–984. doi: 10.1016/s0891-5849(99)00172-0. [DOI] [PubMed] [Google Scholar]
  13. Henderson G. B., Yamaguchi M., Novoa L., Fairlamb A. H., Cerami A. Biosynthesis of the trypanosomatid metabolite trypanothione: purification and characterization of trypanothione synthetase from Crithidia fasciculata. Biochemistry. 1990 Apr 24;29(16):3924–3929. doi: 10.1021/bi00468a019. [DOI] [PubMed] [Google Scholar]
  14. Hunter W. N. A structure-based approach to drug discovery; crystallography and implications for the development of antiparasite drugs. Parasitology. 1997;114 (Suppl):S17–S29. [PubMed] [Google Scholar]
  15. Koenig K., Menge U., Kiess M., Wray V., Flohé L. Convenient isolation and kinetic mechanism of glutathionylspermidine synthetase from Crithidia fasciculata. J Biol Chem. 1997 May 2;272(18):11908–11915. doi: 10.1074/jbc.272.18.11908. [DOI] [PubMed] [Google Scholar]
  16. Krauth-Siegel R. L., Schöneck R. Flavoprotein structure and mechanism. 5. Trypanothione reductase and lipoamide dehydrogenase as targets for a structure-based drug design. FASEB J. 1995 Sep;9(12):1138–1146. doi: 10.1096/fasebj.9.12.7672506. [DOI] [PubMed] [Google Scholar]
  17. Krieger S., Schwarz W., Ariyanayagam M. R., Fairlamb A. H., Krauth-Siegel R. L., Clayton C. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol. 2000 Feb;35(3):542–552. doi: 10.1046/j.1365-2958.2000.01721.x. [DOI] [PubMed] [Google Scholar]
  18. Kwon D. S., Lin C. H., Chen S., Coward J. K., Walsh C. T., Bollinger J. M., Jr Dissection of glutathionylspermidine synthetase/amidase from Escherichia coli into autonomously folding and functional synthetase and amidase domains. J Biol Chem. 1997 Jan 24;272(4):2429–2436. doi: 10.1074/jbc.272.4.2429. [DOI] [PubMed] [Google Scholar]
  19. Lin C. H., Kwon D. S., Bollinger J. M., Jr, Walsh C. T. Evidence for a glutathionyl-enzyme intermediate in the amidase activity of the bifunctional glutathionylspermidine synthetase/amidase from Escherichia coli. Biochemistry. 1997 Dec 2;36(48):14930–14938. doi: 10.1021/bi9714464. [DOI] [PubMed] [Google Scholar]
  20. Shim H., Fairlamb A. H. Levels of polyamines, glutathione and glutathione-spermidine conjugates during growth of the insect trypanosomatid Crithidia fasciculata. J Gen Microbiol. 1988 Mar;134(3):807–817. doi: 10.1099/00221287-134-3-807. [DOI] [PubMed] [Google Scholar]
  21. Smith K., Borges A., Ariyanayagam M. R., Fairlamb A. H. Glutathionylspermidine metabolism in Escherichia coli. Biochem J. 1995 Dec 1;312(Pt 2):465–469. doi: 10.1042/bj3120465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith K., Nadeau K., Bradley M., Walsh C., Fairlamb A. H. Purification of glutathionylspermidine and trypanothione synthetases from Crithidia fasciculata. Protein Sci. 1992 Jul;1(7):874–883. doi: 10.1002/pro.5560010705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sreerama N., Woody R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem. 1993 Feb 15;209(1):32–44. doi: 10.1006/abio.1993.1079. [DOI] [PubMed] [Google Scholar]
  24. Tabor H., Tabor C. W. Isolation, characterization, and turnover of glutathionylspermidine from Escherichia coli. J Biol Chem. 1975 Apr 10;250(7):2648–2654. [PubMed] [Google Scholar]
  25. Tetaud E., Manai F., Barrett M. P., Nadeau K., Walsh C. T., Fairlamb A. H. Cloning and characterization of the two enzymes responsible for trypanothione biosynthesis in Crithidia fasciculata. J Biol Chem. 1998 Jul 31;273(31):19383–19390. doi: 10.1074/jbc.273.31.19383. [DOI] [PubMed] [Google Scholar]
  26. Tovar J., Cunningham M. L., Smith A. C., Croft S. L., Fairlamb A. H. Down-regulation of Leishmania donovani trypanothione reductase by heterologous expression of a trans-dominant mutant homologue: effect on parasite intracellular survival. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5311–5316. doi: 10.1073/pnas.95.9.5311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tovar J., Wilkinson S., Mottram J. C., Fairlamb A. H. Evidence that trypanothione reductase is an essential enzyme in Leishmania by targeted replacement of the tryA gene locus. Mol Microbiol. 1998 Jul;29(2):653–660. doi: 10.1046/j.1365-2958.1998.00968.x. [DOI] [PubMed] [Google Scholar]
  28. Trouiller P., Olliaro P. L. Drug development output from 1975 to 1996: what proportion for tropical diseases? Int J Infect Dis. 1998;3(2):61–63. doi: 10.1016/s1201-9712(99)90010-3. [DOI] [PubMed] [Google Scholar]
  29. Werbovetz K. A. Target-based drug discovery for malaria, leishmaniasis, and trypanosomiasis. Curr Med Chem. 2000 Aug;7(8):835–860. doi: 10.2174/0929867003374615. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES