Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):687–694. doi: 10.1042/BJ20011841

Evaluation of the role of peroxisome-proliferator-activated receptor alpha in the regulation of cardiac pyruvate dehydrogenase kinase 4 protein expression in response to starvation, high-fat feeding and hyperthyroidism.

Mark J Holness 1, Nicholas D Smith 1, Karen Bulmer 1, Teresa Hopkins 1, Geoffrey F Gibbons 1, Mary C Sugden 1
PMCID: PMC1222617  PMID: 12049632

Abstract

Inactivation of cardiac pyruvate dehydrogenase complex (PDC) after prolonged starvation and in response to hyperthyroidism is associated with enhanced protein expression of pyruvate dehydrogenase kinase (PDK) isoform 4. The present study examined the potential role of peroxisome-proliferator-activated receptor alpha (PPARalpha) in adaptive modification of cardiac PDK4 protein expression after starvation and in hyperthyroidism. PDK4 protein expression was analysed by immunoblotting in homogenates of hearts from fed or 48 h-starved rats, rats rendered hyperthyroid by subcutaneous injection of tri-iodothyronine and a subgroup of euthyroid rats maintained on a high-fat/low-carbohydrate diet, with or without treatment with the PPARalpha agonist WY14,643. In addition, PDK4 protein expression was analysed in hearts from fed, 24 h-starved or 6 h-refed wild-type or PPARalpha-null mice. PPARalpha activation by WY14,643 in vivo over the timescale of the response to starvation failed to up-regulate cardiac PDK4 protein expression in rats maintained on standard diet (WY14,643, 1.1-fold increase; starvation, 1.8-fold increase) or influence the cardiac PDK4 response to starvation. By contrast, PPARalpha activation by WY14,643 in vivo significantly enhanced cardiac PDK4 protein expression in rats maintained on a high-fat diet, which itself increased cardiac PDK4 protein expression. PPARalpha deficiency did not abolish up-regulation of cardiac PDK4 protein expression in response to starvation (2.9-fold increases in both wild-type and PPARalpha-null mice). Starvation and hyperthyroidism exerted additive effects on cardiac PDK4 protein expression, but PPARalpha activation by WY14,643 did not influence the response of cardiac PDK4 protein expression to hyperthyroidism in either the fed or starved state. Our data support the hypothesis that cardiac PDK4 protein expression is regulated, at least in part, by a fatty acid-dependent, PPARalpha-independent mechanism and strongly implicate a fall in insulin in either initiating or facilitating the response of cardiac PDK4 protein expression to starvation.

Full Text

The Full Text of this article is available as a PDF (207.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barger P. M., Brandt J. M., Leone T. C., Weinheimer C. J., Kelly D. P. Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. J Clin Invest. 2000 Jun;105(12):1723–1730. doi: 10.1172/JCI9056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barger P. M., Kelly D. P. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000 Aug;10(6):238–245. doi: 10.1016/s1050-1738(00)00077-3. [DOI] [PubMed] [Google Scholar]
  3. Bowker-Kinley M. M., Davis W. I., Wu P., Harris R. A., Popov K. M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998 Jan 1;329(Pt 1):191–196. doi: 10.1042/bj3290191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown C. M., Layman D. K. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet. J Nutr. 1988 Nov;118(11):1294–1298. doi: 10.1093/jn/118.11.1294. [DOI] [PubMed] [Google Scholar]
  5. Brun S., Carmona M. C., Mampel T., Viñas O., Giralt M., Iglesias R., Villarroya F. Activators of peroxisome proliferator-activated receptor-alpha induce the expression of the uncoupling protein-3 gene in skeletal muscle: a potential mechanism for the lipid intake-dependent activation of uncoupling protein-3 gene expression at birth. Diabetes. 1999 Jun;48(6):1217–1222. doi: 10.2337/diabetes.48.6.1217. [DOI] [PubMed] [Google Scholar]
  6. Carroll R., Severson D. L. Peroxisome proliferator-activated receptor-alpha ligands inhibit cardiac lipoprotein lipase activity. Am J Physiol Heart Circ Physiol. 2001 Aug;281(2):H888–H894. doi: 10.1152/ajpheart.2001.281.2.H888. [DOI] [PubMed] [Google Scholar]
  7. Djouadi F., Weinheimer C. J., Kelly D. P. The role of PPAR alpha as a "lipostat" transcription factor. Adv Exp Med Biol. 1999;466:211–220. [PubMed] [Google Scholar]
  8. Fadel B. M., Ellahham S., Ringel M. D., Lindsay J., Jr, Wartofsky L., Burman K. D. Hyperthyroid heart disease. Clin Cardiol. 2000 Jun;23(6):402–408. doi: 10.1002/clc.4960230605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fruchart J. C., Duriez P., Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol. 1999 Jun;10(3):245–257. doi: 10.1097/00041433-199906000-00007. [DOI] [PubMed] [Google Scholar]
  10. Fryer L. G., Holness M. J., Sugden M. C. Selective modification of insulin action in adipose tissue by hyperthyroidism. J Endocrinol. 1997 Sep;154(3):513–522. doi: 10.1677/joe.0.1540513. [DOI] [PubMed] [Google Scholar]
  11. Fryer L. G., Orfali K. A., Holness M. J., Saggerson E. D., Sugden M. C. The long-term regulation of skeletal muscle pyruvate dehydrogenase kinase by dietary lipid is dependent on fatty acid composition. Eur J Biochem. 1995 May 1;229(3):741–748. doi: 10.1111/j.1432-1033.1995.tb20522.x. [DOI] [PubMed] [Google Scholar]
  12. Gervois P., Torra I. P., Fruchart J. C., Staels B. Regulation of lipid and lipoprotein metabolism by PPAR activators. Clin Chem Lab Med. 2000 Jan;38(1):3–11. doi: 10.1515/CCLM.2000.002. [DOI] [PubMed] [Google Scholar]
  13. Holness M. J., Liu Y. L., Sugden M. C. Time courses of the responses of pyruvate dehydrogenase activities to short-term starvation in diaphragm and selected skeletal muscles of the rat. Biochem J. 1989 Dec 15;264(3):771–776. doi: 10.1042/bj2640771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holness M. J., Sugden M. C. Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition. Biochem J. 1990 Aug 15;270(1):245–249. doi: 10.1042/bj2700245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kehrer J. P., Biswal S. S., La E., Thuillier P., Datta K., Fischer S. M., Vanden Heuvel J. P. Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886. Biochem J. 2001 Jun 15;356(Pt 3):899–906. doi: 10.1042/0264-6021:3560899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kersten S., Desvergne B., Wahli W. Roles of PPARs in health and disease. Nature. 2000 May 25;405(6785):421–424. doi: 10.1038/35013000. [DOI] [PubMed] [Google Scholar]
  17. Kersten S., Seydoux J., Peters J. M., Gonzalez F. J., Desvergne B., Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999 Jun;103(11):1489–1498. doi: 10.1172/JCI6223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kroetz D. L., Yook P., Costet P., Bianchi P., Pineau T. Peroxisome proliferator-activated receptor alpha controls the hepatic CYP4A induction adaptive response to starvation and diabetes. J Biol Chem. 1998 Nov 20;273(47):31581–31589. doi: 10.1074/jbc.273.47.31581. [DOI] [PubMed] [Google Scholar]
  19. Leone T. C., Weinheimer C. J., Kelly D. P. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7473–7478. doi: 10.1073/pnas.96.13.7473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lopaschuk G. D., Belke D. D., Gamble J., Itoi T., Schönekess B. O. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994 Aug 4;1213(3):263–276. doi: 10.1016/0005-2760(94)00082-4. [DOI] [PubMed] [Google Scholar]
  21. Marchington D. R., Kerbey A. L., Randle P. J. Longer-term regulation of pyruvate dehydrogenase kinase in cultured rat cardiac myocytes. Biochem J. 1990 Apr 1;267(1):245–247. doi: 10.1042/bj2670245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orfali K. A., Fryer L. G., Holness M. J., Sugden M. C. Interactive effects of insulin and triiodothyronine on pyruvate dehydrogenase kinase activity in cardiac myocytes. J Mol Cell Cardiol. 1995 Mar;27(3):901–908. doi: 10.1016/0022-2828(95)90040-3. [DOI] [PubMed] [Google Scholar]
  23. Orfali K. A., Fryer L. G., Holness M. J., Sugden M. C. Long-term regulation of pyruvate dehydrogenase kinase by high-fat feeding. Experiments in vivo and in cultured cardiomyocytes. FEBS Lett. 1993 Dec 28;336(3):501–505. doi: 10.1016/0014-5793(93)80864-q. [DOI] [PubMed] [Google Scholar]
  24. Orfali K. A., Grimshaw R. M., Sugden M. C. Site-selective modulation of enzymes of cardiac fuel utilization by a diet rich in fat. Biochem Soc Trans. 1994 May;22(2):106S–106S. doi: 10.1042/bst022106s. [DOI] [PubMed] [Google Scholar]
  25. Patel D. D., Knight B. L., Wiggins D., Humphreys S. M., Gibbons G. F. Disturbances in the normal regulation of SREBP-sensitive genes in PPAR alpha-deficient mice. J Lipid Res. 2001 Mar;42(3):328–337. [PubMed] [Google Scholar]
  26. Pineda Torra I., Gervois P., Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol. 1999 Apr;10(2):151–159. doi: 10.1097/00041433-199904000-00009. [DOI] [PubMed] [Google Scholar]
  27. Popov K. M., Hawes J. W., Harris R. A. Mitochondrial alpha-ketoacid dehydrogenase kinases: a new family of protein kinases. Adv Second Messenger Phosphoprotein Res. 1997;31:105–111. [PubMed] [Google Scholar]
  28. Priestman D. A., Orfali K. A., Sugden M. C. Pyruvate inhibition of pyruvate dehydrogenase kinase. Effects of progressive starvation and hyperthyroidism in vivo, and of dibutyryl cyclic AMP and fatty acids in cultured cardiac myocytes. FEBS Lett. 1996 Sep 16;393(2-3):174–178. doi: 10.1016/0014-5793(96)00877-0. [DOI] [PubMed] [Google Scholar]
  29. Ribeiro R. C., Apriletti J. W., Yen P. M., Chin W. W., Baxter J. D. Heterodimerization and deoxyribonucleic acid-binding properties of a retinoid X receptor-related factor. Endocrinology. 1994 Nov;135(5):2076–2085. doi: 10.1210/endo.135.5.7956930. [DOI] [PubMed] [Google Scholar]
  30. Ribeiro R. C., Kushner P. J., Baxter J. D. The nuclear hormone receptor gene superfamily. Annu Rev Med. 1995;46:443–453. doi: 10.1146/annurev.med.46.1.443. [DOI] [PubMed] [Google Scholar]
  31. Sack M. N., Kelly D. P. The energy substrate switch during development of heart failure: gene regulatory mechanisms (Review). Int J Mol Med. 1998 Jan;1(1):17–24. doi: 10.3892/ijmm.1.1.17. [DOI] [PubMed] [Google Scholar]
  32. Schoonjans K., Staels B., Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res. 1996 May;37(5):907–925. [PubMed] [Google Scholar]
  33. Stanley W. C., Lopaschuk G. D., Hall J. L., McCormack J. G. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 1997 Feb;33(2):243–257. doi: 10.1016/s0008-6363(96)00245-3. [DOI] [PubMed] [Google Scholar]
  34. Sugden M. C., Bulmer K., Holness M. J. Fuel-sensing mechanisms integrating lipid and carbohydrate utilization. Biochem Soc Trans. 2001 May;29(Pt 2):272–278. doi: 10.1042/0300-5127:0290272. [DOI] [PubMed] [Google Scholar]
  35. Sugden M. C., Holness M. J., Howard R. M. Changes in lipoprotein lipase activities in adipose tissue, heart and skeletal muscle during continuous or interrupted feeding. Biochem J. 1993 May 15;292(Pt 1):113–119. doi: 10.1042/bj2920113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sugden M. C., Holness M. J., Liu Y. L., Smith D. M., Fryer L. G., Kruszynska Y. T. Mechanisms regulating cardiac fuel selection in hyperthyroidism. Biochem J. 1992 Sep 1;286(Pt 2):513–517. doi: 10.1042/bj2860513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sugden M. C., Langdown M. L., Harris R. A., Holness M. J. Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply. Biochem J. 2000 Dec 15;352(Pt 3):731–738. [PMC free article] [PubMed] [Google Scholar]
  38. Sugden M. C., Liu Y. L., Holness M. J. Glucose utilization by skeletal muscles in vivo in experimental hyperthyroidism in the rat. Biochem J. 1990 Oct 15;271(2):421–425. doi: 10.1042/bj2710421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sugden M. C., Orfali K. A., Fryer L. G., Holness M. J., Priestman D. A. Molecular mechanisms underlying the long-term impact of dietary fat to increase cardiac pyruvate dehydrogenase kinase: regulation by insulin, cyclic AMP and pyruvate. J Mol Cell Cardiol. 1997 Jul;29(7):1867–1875. doi: 10.1006/jmcc.1997.0425. [DOI] [PubMed] [Google Scholar]
  40. Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol. 1994 Feb;19(2):59–113. doi: 10.1016/0146-2806(94)90008-6. [DOI] [PubMed] [Google Scholar]
  41. Van der Lee K. A., Willemsen P. H., Samec S., Seydoux J., Dulloo A. G., Pelsers M. M., Glatz J. F., Van der Vusse G. J., Van Bilsen M. Fasting-induced changes in the expression of genes controlling substrate metabolism in the rat heart. J Lipid Res. 2001 Nov;42(11):1752–1758. [PubMed] [Google Scholar]
  42. Watanabe K., Fujii H., Takahashi T., Kodama M., Aizawa Y., Ohta Y., Ono T., Hasegawa G., Naito M., Nakajima T. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem. 2000 Jul 21;275(29):22293–22299. doi: 10.1074/jbc.M000248200. [DOI] [PubMed] [Google Scholar]
  43. Wu P., Inskeep K., Bowker-Kinley M. M., Popov K. M., Harris R. A. Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes. Diabetes. 1999 Aug;48(8):1593–1599. doi: 10.2337/diabetes.48.8.1593. [DOI] [PubMed] [Google Scholar]
  44. Wu P., Peters J. M., Harris R. A. Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor alpha. Biochem Biophys Res Commun. 2001 Sep 21;287(2):391–396. doi: 10.1006/bbrc.2001.5608. [DOI] [PubMed] [Google Scholar]
  45. Wu P., Sato J., Zhao Y., Jaskiewicz J., Popov K. M., Harris R. A. Starvation and diabetes increase the amount of pyruvate dehydrogenase kinase isoenzyme 4 in rat heart. Biochem J. 1998 Jan 1;329(Pt 1):197–201. doi: 10.1042/bj3290197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Young M. E., Patil S., Ying J., Depre C., Ahuja H. S., Shipley G. L., Stepkowski S. M., Davies P. J., Taegtmeyer H. Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor (alpha) in the adult rodent heart. FASEB J. 2001 Mar;15(3):833–845. doi: 10.1096/fj.00-0351com. [DOI] [PubMed] [Google Scholar]
  47. Zhou Y. T., Shimabukuro M., Wang M. Y., Lee Y., Higa M., Milburn J. L., Newgard C. B., Unger R. H. Role of peroxisome proliferator-activated receptor alpha in disease of pancreatic beta cells. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8898–8903. doi: 10.1073/pnas.95.15.8898. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES