Abstract
The role of alpha-crystallin, a small heat-shock protein and chaperone, may explain how the lens stays transparent for so long. alpha-Crystallin prevents the aggregation of other lens crystallins and proteins that have become unfolded by 'trapping' the protein in a high-molecular-mass complex. However, during aging, the chaperone function of alpha-crystallin becomes compromised, allowing the formation of light-scattering aggregates that can proceed to form cataracts. Within the central part of the lens there is no turnover of damaged protein, and therefore post-translational modifications of alpha-crystallin accumulate that can reduce chaperone function; this is compounded in cataract lenses. Extensive in vitro glycation, carbamylation and oxidation all decrease chaperone ability. In the present study, we report the effect of the modifiers malondialdehyde, acetaldehyde and methylglyoxal, all of which are pertinent to cataract. Also modification by aspirin, which is known to delay cataract and other diseases, has been investigated. Recently, two point mutations of arginine residues were shown to cause congenital cataract. 1,2-Cyclohexanedione modifies arginine residues, and the extent of modification needed for a change in chaperone function was investigated. Only methylglyoxal and extensive modification by 1,2-cyclohexanedione caused a decrease in chaperone function. This highlights the robust nature of alpha-crystallin.
Full Text
The Full Text of this article is available as a PDF (131.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babizhayev M. A., Deyev A. I. Lens opacity induced by lipid peroxidation products as a model of cataract associated with retinal disease. Biochim Biophys Acta. 1989 Jul 17;1004(1):124–133. doi: 10.1016/0005-2760(89)90222-1. [DOI] [PubMed] [Google Scholar]
- Berengian A. R., Bova M. P., Mchaourab H. S. Structure and function of the conserved domain in alphaA-crystallin. Site-directed spin labeling identifies a beta-strand located near a subunit interface. Biochemistry. 1997 Aug 19;36(33):9951–9957. doi: 10.1021/bi9712347. [DOI] [PubMed] [Google Scholar]
- Bhuyan K. C., Bhuyan D. K., Podos S. M. Lipid peroxidation in cataract of the human. Life Sci. 1986 Apr 21;38(16):1463–1471. doi: 10.1016/0024-3205(86)90559-x. [DOI] [PubMed] [Google Scholar]
- Blakytny R., Harding J. J. Prevention of cataract in diabetic rats by aspirin, paracetamol (acetaminophen) and ibuprofen. Exp Eye Res. 1992 Apr;54(4):509–518. doi: 10.1016/0014-4835(92)90129-g. [DOI] [PubMed] [Google Scholar]
- Bova M. P., Yaron O., Huang Q., Ding L., Haley D. A., Stewart P. L., Horwitz J. Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6137–6142. doi: 10.1073/pnas.96.11.6137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buttkus H. A. Fluorescent lipid autoxidation products. J Agric Food Chem. 1975 Jul-Aug;23(4):823–825. doi: 10.1021/jf60200a052. [DOI] [PubMed] [Google Scholar]
- Cherian M., Abraham E. C. Decreased molecular chaperone property of alpha-crystallins due to posttranslational modifications. Biochem Biophys Res Commun. 1995 Mar 17;208(2):675–679. doi: 10.1006/bbrc.1995.1391. [DOI] [PubMed] [Google Scholar]
- Clayton R. M., Cuthbert J., Seth J., Phillips C. I., Bartholomew R. S., Reid J. M. Epidemiological and other studies in the assessment of factors contributing to cataractogenesis. Ciba Found Symp. 1984;106:25–47. doi: 10.1002/9780470720875.ch3. [DOI] [PubMed] [Google Scholar]
- Cotlier E., Sharma Y. R. Aspirin and senile cataracts in rheumatoid arthritis. Lancet. 1981 Feb 7;1(8215):338–339. doi: 10.1016/s0140-6736(81)91965-6. [DOI] [PubMed] [Google Scholar]
- Derham B. K., Harding J. J. Effect of aging on the chaperone-like function of human alpha-crystallin assessed by three methods. Biochem J. 1997 Dec 15;328(Pt 3):763–768. doi: 10.1042/bj3280763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donohue T. M., Jr, Tuma D. J., Sorrell M. F. Acetaldehyde adducts with proteins: binding of [14C]acetaldehyde to serum albumin. Arch Biochem Biophys. 1983 Jan;220(1):239–246. doi: 10.1016/0003-9861(83)90406-x. [DOI] [PubMed] [Google Scholar]
- Gaines K. C., Salhany J. M., Tuma D. J., Sorrell M. F. Reaction of acetaldehyde with human erythrocyte membrane proteins. FEBS Lett. 1977 Mar 15;75(1):115–119. doi: 10.1016/0014-5793(77)80065-3. [DOI] [PubMed] [Google Scholar]
- Goosey J. D., Tuan W. M., Garcia C. A. A lipid peroxidative mechanism for posterior subcapsular cataract formation in the rabbit: a possible model for cataract formation in tapetoretinal diseases. Invest Ophthalmol Vis Sci. 1984 May;25(5):608–612. [PubMed] [Google Scholar]
- Haik G. M., Jr, Lo T. W., Thornalley P. J. Methylglyoxal concentration and glyoxalase activities in the human lens. Exp Eye Res. 1994 Oct;59(4):497–500. doi: 10.1006/exer.1994.1135. [DOI] [PubMed] [Google Scholar]
- Harding J. J. Cataract, Alzheimer's disease, and other conformational diseases. Curr Opin Ophthalmol. 1998 Feb;9(1):10–13. doi: 10.1097/00055735-199802000-00003. [DOI] [PubMed] [Google Scholar]
- Heath M. M., Rixon K. C., Harding J. J. Glycation-induced inactivation of malate dehydrogenase protection by aspirin and a lens molecular chaperone, alpha-crystallin. Biochim Biophys Acta. 1996 Apr 12;1315(3):176–184. doi: 10.1016/0925-4439(95)00120-4. [DOI] [PubMed] [Google Scholar]
- Hoffmann T., Meyer R. J., Sorrell M. F., Tuma D. J. Reaction of acetaldehyde with proteins: formation of stable fluorescent adducts. Alcohol Clin Exp Res. 1993 Feb;17(1):69–74. doi: 10.1111/j.1530-0277.1993.tb00728.x. [DOI] [PubMed] [Google Scholar]
- Hook D. W., Harding J. J. Molecular chaperones protect catalase against thermal stress. Eur J Biochem. 1997 Jul 1;247(1):380–385. doi: 10.1111/j.1432-1033.1997.00380.x. [DOI] [PubMed] [Google Scholar]
- Horwitz J. Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10449–10453. doi: 10.1073/pnas.89.21.10449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janin J., Miller S., Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988 Nov 5;204(1):155–164. doi: 10.1016/0022-2836(88)90606-7. [DOI] [PubMed] [Google Scholar]
- Kumar L. V., Ramakrishna T., Rao C. M. Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. 1999 Aug 20;274(34):24137–24141. doi: 10.1074/jbc.274.34.24137. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Libondi T., Ragone R., Vincenti D., Stiuso P., Auricchio G., Colonna G. In vitro cross-linking of calf lens alpha-crystallin by malondialdehyde. Int J Pept Protein Res. 1994 Oct;44(4):342–347. doi: 10.1111/j.1399-3011.1994.tb01018.x. [DOI] [PubMed] [Google Scholar]
- Litt M., Kramer P., LaMorticella D. M., Murphey W., Lovrien E. W., Weleber R. G. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet. 1998 Mar;7(3):471–474. doi: 10.1093/hmg/7.3.471. [DOI] [PubMed] [Google Scholar]
- Micelli-Ferrari T., Vendemiale G., Grattagliano I., Boscia F., Arnese L., Altomare E., Cardia L. Role of lipid peroxidation in the pathogenesis of myopic and senile cataract. Br J Ophthalmol. 1996 Sep;80(9):840–843. doi: 10.1136/bjo.80.9.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monnier V. M., Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science. 1981 Jan 30;211(4481):491–493. doi: 10.1126/science.6779377. [DOI] [PubMed] [Google Scholar]
- Nagaraj R. H., Monnier V. M. Protein modification by the degradation products of ascorbate: formation of a novel pyrrole from the Maillard reaction of L-threose with proteins. Biochim Biophys Acta. 1995 Nov 15;1253(1):75–84. doi: 10.1016/0167-4838(95)00161-m. [DOI] [PubMed] [Google Scholar]
- Nair V., Cooper C. S., Vietti D. E., Turner G. A. The chemistry of lipid peroxidation metabolites: crosslinking reactions of malondialdehyde. Lipids. 1986 Jan;21(1):6–10. doi: 10.1007/BF02534294. [DOI] [PubMed] [Google Scholar]
- Patthy L., Smith E. L. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues. J Biol Chem. 1975 Jan 25;250(2):557–564. [PubMed] [Google Scholar]
- Plater M. L., Goode D., Crabbe M. J. Ibuprofen protects alpha-crystallin against posttranslational modification by preventing protein cross-linking. Ophthalmic Res. 1997;29(6):421–428. doi: 10.1159/000268043. [DOI] [PubMed] [Google Scholar]
- Qin W., Smith J. B., Smith D. L. Rates of carbamylation of specific lysyl residues in bovine alpha-crystallins. J Biol Chem. 1992 Dec 25;267(36):26128–26133. [PubMed] [Google Scholar]
- Qin W., Smith J. B., Smith D. L. Reaction of aspirin with cysteinyl residues of lens gamma-crystallins: a mechanism for the proposed anti-cataract effect of aspirin. Biochim Biophys Acta. 1993 Apr 30;1181(2):103–110. doi: 10.1016/0925-4439(93)90098-l. [DOI] [PubMed] [Google Scholar]
- Rao G. N., Lardis M. P., Cotlier E. Acetylation of lens crystallins: a possible mechanism by which aspirin could prevent cataract formation. Biochem Biophys Res Commun. 1985 May 16;128(3):1125–1132. doi: 10.1016/0006-291x(85)91057-5. [DOI] [PubMed] [Google Scholar]
- Riley M. L., Harding J. J. The reaction of malondialdehyde with lens proteins and the protective effect of aspirin. Biochim Biophys Acta. 1993 Oct 3;1158(2):107–112. doi: 10.1016/0304-4165(93)90003-q. [DOI] [PubMed] [Google Scholar]
- Riley M. L., Harding J. J. The reaction of methylglyoxal with human and bovine lens proteins. Biochim Biophys Acta. 1995 Jan 25;1270(1):36–43. doi: 10.1016/0925-4439(94)00069-3. [DOI] [PubMed] [Google Scholar]
- Rosenfeld L., Spector A. Comparison of polyunsaturated fatty acid levels in normal and mature cataractous human lenses. Exp Eye Res. 1982 Jul;35(1):69–75. doi: 10.1016/s0014-4835(82)80024-9. [DOI] [PubMed] [Google Scholar]
- Shroff N. P., Cherian-Shaw M., Bera S., Abraham E. C. Mutation of R116C results in highly oligomerized alpha A-crystallin with modified structure and defective chaperone-like function. Biochemistry. 2000 Feb 15;39(6):1420–1426. doi: 10.1021/bi991656b. [DOI] [PubMed] [Google Scholar]
- Slingsby C., Bateman O. A. Rapid separation of bovine beta-crystallin subunits beta B1, beta B2, beta B3, beta A3 and beta A4. Exp Eye Res. 1990 Jul;51(1):21–26. doi: 10.1016/0014-4835(90)90165-q. [DOI] [PubMed] [Google Scholar]
- Ting H. H., Crabbe M. J. Bovine lens aldehyde dehydrogenase. Purification and preliminary characterization. Biochem J. 1983 Nov 1;215(2):351–359. doi: 10.1042/bj2150351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vicart P., Caron A., Guicheney P., Li Z., Prévost M. C., Faure A., Chateau D., Chapon F., Tomé F., Dupret J. M. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat Genet. 1998 Sep;20(1):92–95. doi: 10.1038/1765. [DOI] [PubMed] [Google Scholar]
- Zigler J. S., Jr, Bodaness R. S., Gery I., Kinoshita J. H. Effects of lipid peroxidation products on the rat lens in organ culture: a possible mechanism of cataract initiation in retinal degenerative disease. Arch Biochem Biophys. 1983 Aug;225(1):149–156. doi: 10.1016/0003-9861(83)90018-8. [DOI] [PubMed] [Google Scholar]
- van Boekel M. A., Hoogakker S. E., Harding J. J., de Jong W. W. The influence of some post-translational modifications on the chaperone-like activity of alpha-crystallin. Ophthalmic Res. 1996;28 (Suppl 1):32–38. doi: 10.1159/000267940. [DOI] [PubMed] [Google Scholar]
- van Heyningen R., Harding J. J. A case-control study of cataract in Oxfordshire: some risk factors. Br J Ophthalmol. 1988 Nov;72(11):804–808. doi: 10.1136/bjo.72.11.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Heyningen R., Harding J. J. Do aspirin-like analgesics protect against cataract? A case-control study. Lancet. 1986 May 17;1(8490):1111–1113. doi: 10.1016/s0140-6736(86)91834-9. [DOI] [PubMed] [Google Scholar]