Abstract
The genetic hallmark of Ewing's sarcoma family of tumours (ET) is the presence of the translocation t(11;22)(q24;q12), which creates the ET fusion gene, leading to cellular transformation. Five human gamma-glutamyl transpeptidase (gamma-GT) genes are located near the chromosomal translocation in ET. gamma-GT is a major enzyme involved in glutathione homoeostasis. Five human cell lines representative of primary or metastatic tumours were investigated to study whether gamma-GT alterations could occur at the chromosomal breaks and rearrangements in ET. As shown by enzymic assays and FACS analyses, all ET cell lines consistently expressed a functional gamma-GT which however did not discriminate steps of ET progression. As shown previously [Sancéau, Hiscott, Delattre and Wietzerbin (2000) Oncogene 19, 3372-3383], ET cells respond to the antiproliferative effects of interferons (IFNs) type I (alpha and beta) and to a much less degree to IFN type II (gamma). IFN-alpha and -beta arrested cells in the S-phase of the cell cycle. We found an enhancement of gamma-GT mRNA species with IFN-alpha and -beta by reverse transcriptase-PCR analyses. This is reflected by up-regulation of gamma-GT protein, which coincides with the increase in gamma-GT-specific enzymic activity. Similarly, IFNs up-regulate the levels of gamma-GT in another IFN-responsive B cell line. Whether this up-regulation of gamma-GT by IFNs is of physiological relevance to cell behaviour remains to be studied.
Full Text
The Full Text of this article is available as a PDF (205.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen L., Meck R., Yunis A. The inhibition of gamma-glutamyl transpeptidase from human pancreatic carcinoma cells by (alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501). Res Commun Chem Pathol Pharmacol. 1980 Jan;27(1):175–182. [PubMed] [Google Scholar]
- Antczak C., De Meester I., Bauvois B. Ectopeptidases in pathophysiology. Bioessays. 2001 Mar;23(3):251–260. doi: 10.1002/1521-1878(200103)23:3<251::AID-BIES1035>3.0.CO;2-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Antczak C., De Meester I., Bauvois B. Transmembrane proteases as disease markers and targets for therapy. J Biol Regul Homeost Agents. 2001 Apr-Jun;15(2):130–139. [PubMed] [Google Scholar]
- Antczak C., Karp D. R., London R. E., Bauvois B. Reanalysis of the involvement of gamma-glutamyl transpeptidase in the cell activation process. FEBS Lett. 2001 Nov 16;508(2):226–230. doi: 10.1016/s0014-5793(01)03057-5. [DOI] [PubMed] [Google Scholar]
- Aurias A., Rimbaut C., Buffe D., Zucker J. M., Mazabraud A. Translocation involving chromosome 22 in Ewing's sarcoma. A cytogenetic study of four fresh tumors. Cancer Genet Cytogenet. 1984 May;12(1):21–25. doi: 10.1016/0165-4608(84)90003-7. [DOI] [PubMed] [Google Scholar]
- Bailly R. A., Bosselut R., Zucman J., Cormier F., Delattre O., Roussel M., Thomas G., Ghysdael J. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994 May;14(5):3230–3241. doi: 10.1128/mcb.14.5.3230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauvois B., Djavaheri-Mergny M., Rouillard D., Dumont J., Wietzerbin J. Regulation of CD26/DPPIV gene expression by interferons and retinoic acid in tumor B cells. Oncogene. 2000 Jan 13;19(2):265–272. doi: 10.1038/sj.onc.1203292. [DOI] [PubMed] [Google Scholar]
- Bauvois B., Laouar A., Rouillard D., Wietzerbin J. Inhibition of gamma-glutamyl transpeptidase activity at the surface of human myeloid cells is correlated with macrophage maturation and transforming growth factor beta production. Cell Growth Differ. 1995 Sep;6(9):1163–1170. [PubMed] [Google Scholar]
- Bauvois B., Van Weyenbergh J., Rouillard D., Wietzerbin J. TGF-beta 1-stimulated adhesion of human mononuclear phagocytes to fibronectin and laminin is abolished by IFN-gamma: dependence on alpha 5 beta 1 and beta 2 integrins. Exp Cell Res. 1996 Jan 10;222(1):209–217. doi: 10.1006/excr.1996.0026. [DOI] [PubMed] [Google Scholar]
- Bulle F., Mattei M. G., Siegrist S., Pawlak A., Passage E., Chobert M. N., Laperche Y., Guellaën G. Assignment of the human gamma-glutamyl transferase gene to the long arm of chromosome 22. Hum Genet. 1987 Jul;76(3):283–286. doi: 10.1007/BF00283624. [DOI] [PubMed] [Google Scholar]
- Chikhi N., Holic N., Guellaen G., Laperche Y. Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem Physiol B Biochem Mol Biol. 1999 Apr;122(4):367–380. doi: 10.1016/s0305-0491(99)00013-9. [DOI] [PubMed] [Google Scholar]
- Collins J. E., Mungall A. J., Badcock K. L., Fay J. M., Dunham I. The organization of the gamma-glutamyl transferase genes and other low copy repeats in human chromosome 22q11. Genome Res. 1997 May;7(5):522–531. doi: 10.1101/gr.7.5.522. [DOI] [PubMed] [Google Scholar]
- Courtay C., Heisterkamp N., Siest G., Groffen J. Expression of multiple gamma-glutamyltransferase genes in man. Biochem J. 1994 Feb 1;297(Pt 3):503–508. doi: 10.1042/bj2970503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decker T., Kovarik P. Serine phosphorylation of STATs. Oncogene. 2000 May 15;19(21):2628–2637. doi: 10.1038/sj.onc.1203481. [DOI] [PubMed] [Google Scholar]
- Delattre O., Zucman J., Plougastel B., Desmaze C., Melot T., Peter M., Kovar H., Joubert I., de Jong P., Rouleau G. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992 Sep 10;359(6391):162–165. doi: 10.1038/359162a0. [DOI] [PubMed] [Google Scholar]
- Hamelin R., Zucman J., Melot T., Delattre O., Thomas G. p53 mutations in human tumors with chimeric EWS/FLI-1 genes. Int J Cancer. 1994 May 1;57(3):336–340. doi: 10.1002/ijc.2910570308. [DOI] [PubMed] [Google Scholar]
- Harada H., Taniguchi T., Tanaka N. The role of interferon regulatory factors in the interferon system and cell growth control. Biochimie. 1998 Aug-Sep;80(8-9):641–650. doi: 10.1016/s0300-9084(99)80017-0. [DOI] [PubMed] [Google Scholar]
- Heisterkamp N., Groffen J. Duplication of the bcr and gamma-glutamyl transpeptidase genes. Nucleic Acids Res. 1988 Aug 25;16(16):8045–8056. doi: 10.1093/nar/16.16.8045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvath C. M., Darnell J. E. The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr Opin Cell Biol. 1997 Apr;9(2):233–239. doi: 10.1016/s0955-0674(97)80067-1. [DOI] [PubMed] [Google Scholar]
- Jaishankar S., Zhang J., Roussel M. F., Baker S. J. Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity. Oncogene. 1999 Sep 30;18(40):5592–5597. doi: 10.1038/sj.onc.1202940. [DOI] [PubMed] [Google Scholar]
- Joshi C. V., Supriya P., Ajitkumar P. Growth inhibition of human promonocytic leukaemic U937 cells by interferon gamma is irreversible and not cell cycle phase-specific. Cytokine. 1999 Sep;11(9):673–678. doi: 10.1006/cyto.1998.0474. [DOI] [PubMed] [Google Scholar]
- Karp D. R., Carlisle M. L., Mobley A. B., Nichols T. C., Oppenheimer-Marks N., Brezinschek R. I., Holers V. M. Gamma-glutamyl transpeptidase is up-regulated on memory T lymphocytes. Int Immunol. 1999 Nov;11(11):1791–1800. doi: 10.1093/intimm/11.11.1791. [DOI] [PubMed] [Google Scholar]
- Kovar H., Aryee D. N., Jug G., Henöckl C., Schemper M., Delattre O., Thomas G., Gadner H. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ. 1996 Apr;7(4):429–437. [PubMed] [Google Scholar]
- Kovar H., Auinger A., Jug G., Aryee D., Zoubek A., Salzer-Kuntschik M., Gadner H. Narrow spectrum of infrequent p53 mutations and absence of MDM2 amplification in Ewing tumours. Oncogene. 1993 Oct;8(10):2683–2690. [PubMed] [Google Scholar]
- Lasfar A., Wietzerbin J., Billard C. Differential regulation of interleukin-6 receptors by interleukin-6 and interferons in multiple myeloma cell lines. Eur J Immunol. 1994 Jan;24(1):124–130. doi: 10.1002/eji.1830240119. [DOI] [PubMed] [Google Scholar]
- May W. A., Lessnick S. L., Braun B. S., Klemsz M., Lewis B. C., Lunsford L. B., Hromas R., Denny C. T. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993 Dec;13(12):7393–7398. doi: 10.1128/mcb.13.12.7393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A. M., Sandler E., Kobb S. M., Eastgate J., Zucali J. Hematopoietic growth factor induction of gamma-glutamyl transferase in the KG-1 myeloid cell line. Exp Hematol. 1993 Jan;21(1):9–15. [PubMed] [Google Scholar]
- Morris C., Courtay C., Geurts van Kessel A., ten Hoeve J., Heisterkamp N., Groffen J. Localization of a gamma-glutamyl-transferase-related gene family on chromosome 22. Hum Genet. 1993 Mar;91(1):31–36. doi: 10.1007/BF00230218. [DOI] [PubMed] [Google Scholar]
- Muro M., Naomoto Y., Orita K. Mechanism of the combined antitumor effect of natural human tumor necrosis factor-alpha and natural human interferon-alpha on cell cycle progression. Jpn J Cancer Res. 1991 Jan;82(1):118–126. doi: 10.1111/j.1349-7006.1991.tb01754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naidu K. A., Wiranowska M., Phuphanich S., Prockop L. D. Modulation of glioma cell growth and 5-lipoxygenase expression by interferon. Anticancer Res. 1996 Nov-Dec;16(6B):3475–3482. [PubMed] [Google Scholar]
- Nichols T. C., Guthridge J. M., Karp D. R., Molina H., Fletcher D. R., Holers V. M. Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol. 1998 Dec;28(12):4123–4129. doi: 10.1002/(SICI)1521-4141(199812)28:12<4123::AID-IMMU4123>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Ouchida M., Ohno T., Fujimura Y., Rao V. N., Reddy E. S. Loss of tumorigenicity of Ewing's sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene. 1995 Sep 21;11(6):1049–1054. [PubMed] [Google Scholar]
- Preisler H. D., Gopal V., Banavali S. D., Finke D., Bokari S. A. Multiparameter assessment of the cell cycle effects of bioactive and cytotoxic agents. Cancer Res. 1992 Aug 1;52(15):4090–4095. [PubMed] [Google Scholar]
- Qin X. Q., Runkel L., Deck C., DeDios C., Barsoum J. Interferon-beta induces S phase accumulation selectively in human transformed cells. J Interferon Cytokine Res. 1997 Jun;17(6):355–367. doi: 10.1089/jir.1997.17.355. [DOI] [PubMed] [Google Scholar]
- Ramana C. V., Chatterjee-Kishore M., Nguyen H., Stark G. R. Complex roles of Stat1 in regulating gene expression. Oncogene. 2000 May 15;19(21):2619–2627. doi: 10.1038/sj.onc.1203525. [DOI] [PubMed] [Google Scholar]
- Remvikos Y., Tominaga O., Hammel P., Laurent-Puig P., Salmon R. J., Dutrillaux B., Thomas G. Increased p53 protein content of colorectal tumours correlates with poor survival. Br J Cancer. 1992 Oct;66(4):758–764. doi: 10.1038/bjc.1992.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riemann D., Kehlen A., Langner J. Stimulation of the expression and the enzyme activity of aminopeptidase N/CD13 and dipeptidylpeptidase IV/CD26 on human renal cell carcinoma cells and renal tubular epithelial cells by T cell-derived cytokines, such as IL-4 and IL-13. Clin Exp Immunol. 1995 May;100(2):277–283. doi: 10.1111/j.1365-2249.1995.tb03665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosolen A., Todesco A., Colamonici O. R., Basso G., Frascella E. Expression of type I interferon receptor in solid tumors of childhood. Mod Pathol. 1997 Jan;10(1):55–61. [PubMed] [Google Scholar]
- Sancéau J., Hiscott J., Delattre O., Wietzerbin J. IFN-beta induces serine phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene. 2000 Jul 13;19(30):3372–3383. doi: 10.1038/sj.onc.1203670. [DOI] [PubMed] [Google Scholar]
- Seidel H. M., Lamb P., Rosen J. Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene. 2000 May 15;19(21):2645–2656. doi: 10.1038/sj.onc.1203550. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Iwakuma T., Harimaya K., Sato H., Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997 Jan 15;99(2):239–247. doi: 10.1172/JCI119152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate S. S., Meister A. gamma-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem. 1981 Sep 25;39:357–368. doi: 10.1007/BF00232585. [DOI] [PubMed] [Google Scholar]
- Tiefenbrun N., Melamed D., Levy N., Resnitzky D., Hoffman I., Reed S. I., Kimchi A. Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible G0-like arrest. Mol Cell Biol. 1996 Jul;16(7):3934–3944. doi: 10.1128/mcb.16.7.3934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tossing G. New developments in interferon therapy. Eur J Med Res. 2001 Feb 28;6(2):47–65. [PubMed] [Google Scholar]
- Tsutsumi M., Sakamuro D., Takada A., Zang S. C., Furukawa T., Taniguchi N. Detection of a unique gamma-glutamyl transpeptidase messenger RNA species closely related to the development of hepatocellular carcinoma in humans: a new candidate for early diagnosis of hepatocellular carcinoma. Hepatology. 1996 May;23(5):1093–1097. doi: 10.1002/hep.510230524. [DOI] [PubMed] [Google Scholar]
- Vaughan P. S., van Wijnen A. J., Stein J. L., Stein G. S. Interferon regulatory factors: growth control and histone gene regulation--it's not just interferon anymore. J Mol Med (Berl) 1997 May;75(5):348–359. doi: 10.1007/s001090050120. [DOI] [PubMed] [Google Scholar]
- Visvikis A., Pawlak A., Accaoui M. J., Ichino K., Leh H., Guellaen G., Wellman M. Structure of the 5' sequences of the human gamma-glutamyltransferase gene. Eur J Biochem. 2001 Jan;268(2):317–325. doi: 10.1046/j.1432-1033.2001.01881.x. [DOI] [PubMed] [Google Scholar]
- Whitfield J. B. Gamma glutamyl transferase. Crit Rev Clin Lab Sci. 2001 Aug;38(4):263–355. doi: 10.1080/20014091084227. [DOI] [PubMed] [Google Scholar]
- Woodlock T. J., Brown R., Mani M., Pompeo L., Hoffman H., Segel G. B., Silber R. Decreased L system amino acid transport and decreased gamma-glutamyl transpeptidase are independent processes in human chronic lymphocytic leukemia B-lymphocytes. J Cell Physiol. 1990 Nov;145(2):217–221. doi: 10.1002/jcp.1041450205. [DOI] [PubMed] [Google Scholar]