Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):719–724. doi: 10.1042/BJ20011854

gamma-Glutamyl transpeptidase expression in Ewing's sarcoma cells: up-regulation by interferons.

Lena Bouman 1, Josiane Sancéau 1, Dany Rouillard 1, Brigitte Bauvois 1
PMCID: PMC1222621  PMID: 12049636

Abstract

The genetic hallmark of Ewing's sarcoma family of tumours (ET) is the presence of the translocation t(11;22)(q24;q12), which creates the ET fusion gene, leading to cellular transformation. Five human gamma-glutamyl transpeptidase (gamma-GT) genes are located near the chromosomal translocation in ET. gamma-GT is a major enzyme involved in glutathione homoeostasis. Five human cell lines representative of primary or metastatic tumours were investigated to study whether gamma-GT alterations could occur at the chromosomal breaks and rearrangements in ET. As shown by enzymic assays and FACS analyses, all ET cell lines consistently expressed a functional gamma-GT which however did not discriminate steps of ET progression. As shown previously [Sancéau, Hiscott, Delattre and Wietzerbin (2000) Oncogene 19, 3372-3383], ET cells respond to the antiproliferative effects of interferons (IFNs) type I (alpha and beta) and to a much less degree to IFN type II (gamma). IFN-alpha and -beta arrested cells in the S-phase of the cell cycle. We found an enhancement of gamma-GT mRNA species with IFN-alpha and -beta by reverse transcriptase-PCR analyses. This is reflected by up-regulation of gamma-GT protein, which coincides with the increase in gamma-GT-specific enzymic activity. Similarly, IFNs up-regulate the levels of gamma-GT in another IFN-responsive B cell line. Whether this up-regulation of gamma-GT by IFNs is of physiological relevance to cell behaviour remains to be studied.

Full Text

The Full Text of this article is available as a PDF (205.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen L., Meck R., Yunis A. The inhibition of gamma-glutamyl transpeptidase from human pancreatic carcinoma cells by (alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125; NSC-163501). Res Commun Chem Pathol Pharmacol. 1980 Jan;27(1):175–182. [PubMed] [Google Scholar]
  2. Antczak C., De Meester I., Bauvois B. Ectopeptidases in pathophysiology. Bioessays. 2001 Mar;23(3):251–260. doi: 10.1002/1521-1878(200103)23:3<251::AID-BIES1035>3.0.CO;2-O. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antczak C., De Meester I., Bauvois B. Transmembrane proteases as disease markers and targets for therapy. J Biol Regul Homeost Agents. 2001 Apr-Jun;15(2):130–139. [PubMed] [Google Scholar]
  4. Antczak C., Karp D. R., London R. E., Bauvois B. Reanalysis of the involvement of gamma-glutamyl transpeptidase in the cell activation process. FEBS Lett. 2001 Nov 16;508(2):226–230. doi: 10.1016/s0014-5793(01)03057-5. [DOI] [PubMed] [Google Scholar]
  5. Aurias A., Rimbaut C., Buffe D., Zucker J. M., Mazabraud A. Translocation involving chromosome 22 in Ewing's sarcoma. A cytogenetic study of four fresh tumors. Cancer Genet Cytogenet. 1984 May;12(1):21–25. doi: 10.1016/0165-4608(84)90003-7. [DOI] [PubMed] [Google Scholar]
  6. Bailly R. A., Bosselut R., Zucman J., Cormier F., Delattre O., Roussel M., Thomas G., Ghysdael J. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol. 1994 May;14(5):3230–3241. doi: 10.1128/mcb.14.5.3230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bauvois B., Djavaheri-Mergny M., Rouillard D., Dumont J., Wietzerbin J. Regulation of CD26/DPPIV gene expression by interferons and retinoic acid in tumor B cells. Oncogene. 2000 Jan 13;19(2):265–272. doi: 10.1038/sj.onc.1203292. [DOI] [PubMed] [Google Scholar]
  8. Bauvois B., Laouar A., Rouillard D., Wietzerbin J. Inhibition of gamma-glutamyl transpeptidase activity at the surface of human myeloid cells is correlated with macrophage maturation and transforming growth factor beta production. Cell Growth Differ. 1995 Sep;6(9):1163–1170. [PubMed] [Google Scholar]
  9. Bauvois B., Van Weyenbergh J., Rouillard D., Wietzerbin J. TGF-beta 1-stimulated adhesion of human mononuclear phagocytes to fibronectin and laminin is abolished by IFN-gamma: dependence on alpha 5 beta 1 and beta 2 integrins. Exp Cell Res. 1996 Jan 10;222(1):209–217. doi: 10.1006/excr.1996.0026. [DOI] [PubMed] [Google Scholar]
  10. Bulle F., Mattei M. G., Siegrist S., Pawlak A., Passage E., Chobert M. N., Laperche Y., Guellaën G. Assignment of the human gamma-glutamyl transferase gene to the long arm of chromosome 22. Hum Genet. 1987 Jul;76(3):283–286. doi: 10.1007/BF00283624. [DOI] [PubMed] [Google Scholar]
  11. Chikhi N., Holic N., Guellaen G., Laperche Y. Gamma-glutamyl transpeptidase gene organization and expression: a comparative analysis in rat, mouse, pig and human species. Comp Biochem Physiol B Biochem Mol Biol. 1999 Apr;122(4):367–380. doi: 10.1016/s0305-0491(99)00013-9. [DOI] [PubMed] [Google Scholar]
  12. Collins J. E., Mungall A. J., Badcock K. L., Fay J. M., Dunham I. The organization of the gamma-glutamyl transferase genes and other low copy repeats in human chromosome 22q11. Genome Res. 1997 May;7(5):522–531. doi: 10.1101/gr.7.5.522. [DOI] [PubMed] [Google Scholar]
  13. Courtay C., Heisterkamp N., Siest G., Groffen J. Expression of multiple gamma-glutamyltransferase genes in man. Biochem J. 1994 Feb 1;297(Pt 3):503–508. doi: 10.1042/bj2970503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Decker T., Kovarik P. Serine phosphorylation of STATs. Oncogene. 2000 May 15;19(21):2628–2637. doi: 10.1038/sj.onc.1203481. [DOI] [PubMed] [Google Scholar]
  15. Delattre O., Zucman J., Plougastel B., Desmaze C., Melot T., Peter M., Kovar H., Joubert I., de Jong P., Rouleau G. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992 Sep 10;359(6391):162–165. doi: 10.1038/359162a0. [DOI] [PubMed] [Google Scholar]
  16. Hamelin R., Zucman J., Melot T., Delattre O., Thomas G. p53 mutations in human tumors with chimeric EWS/FLI-1 genes. Int J Cancer. 1994 May 1;57(3):336–340. doi: 10.1002/ijc.2910570308. [DOI] [PubMed] [Google Scholar]
  17. Harada H., Taniguchi T., Tanaka N. The role of interferon regulatory factors in the interferon system and cell growth control. Biochimie. 1998 Aug-Sep;80(8-9):641–650. doi: 10.1016/s0300-9084(99)80017-0. [DOI] [PubMed] [Google Scholar]
  18. Heisterkamp N., Groffen J. Duplication of the bcr and gamma-glutamyl transpeptidase genes. Nucleic Acids Res. 1988 Aug 25;16(16):8045–8056. doi: 10.1093/nar/16.16.8045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horvath C. M., Darnell J. E. The state of the STATs: recent developments in the study of signal transduction to the nucleus. Curr Opin Cell Biol. 1997 Apr;9(2):233–239. doi: 10.1016/s0955-0674(97)80067-1. [DOI] [PubMed] [Google Scholar]
  20. Jaishankar S., Zhang J., Roussel M. F., Baker S. J. Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity. Oncogene. 1999 Sep 30;18(40):5592–5597. doi: 10.1038/sj.onc.1202940. [DOI] [PubMed] [Google Scholar]
  21. Joshi C. V., Supriya P., Ajitkumar P. Growth inhibition of human promonocytic leukaemic U937 cells by interferon gamma is irreversible and not cell cycle phase-specific. Cytokine. 1999 Sep;11(9):673–678. doi: 10.1006/cyto.1998.0474. [DOI] [PubMed] [Google Scholar]
  22. Karp D. R., Carlisle M. L., Mobley A. B., Nichols T. C., Oppenheimer-Marks N., Brezinschek R. I., Holers V. M. Gamma-glutamyl transpeptidase is up-regulated on memory T lymphocytes. Int Immunol. 1999 Nov;11(11):1791–1800. doi: 10.1093/intimm/11.11.1791. [DOI] [PubMed] [Google Scholar]
  23. Kovar H., Aryee D. N., Jug G., Henöckl C., Schemper M., Delattre O., Thomas G., Gadner H. EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ. 1996 Apr;7(4):429–437. [PubMed] [Google Scholar]
  24. Kovar H., Auinger A., Jug G., Aryee D., Zoubek A., Salzer-Kuntschik M., Gadner H. Narrow spectrum of infrequent p53 mutations and absence of MDM2 amplification in Ewing tumours. Oncogene. 1993 Oct;8(10):2683–2690. [PubMed] [Google Scholar]
  25. Lasfar A., Wietzerbin J., Billard C. Differential regulation of interleukin-6 receptors by interleukin-6 and interferons in multiple myeloma cell lines. Eur J Immunol. 1994 Jan;24(1):124–130. doi: 10.1002/eji.1830240119. [DOI] [PubMed] [Google Scholar]
  26. May W. A., Lessnick S. L., Braun B. S., Klemsz M., Lewis B. C., Lunsford L. B., Hromas R., Denny C. T. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol. 1993 Dec;13(12):7393–7398. doi: 10.1128/mcb.13.12.7393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Miller A. M., Sandler E., Kobb S. M., Eastgate J., Zucali J. Hematopoietic growth factor induction of gamma-glutamyl transferase in the KG-1 myeloid cell line. Exp Hematol. 1993 Jan;21(1):9–15. [PubMed] [Google Scholar]
  28. Morris C., Courtay C., Geurts van Kessel A., ten Hoeve J., Heisterkamp N., Groffen J. Localization of a gamma-glutamyl-transferase-related gene family on chromosome 22. Hum Genet. 1993 Mar;91(1):31–36. doi: 10.1007/BF00230218. [DOI] [PubMed] [Google Scholar]
  29. Muro M., Naomoto Y., Orita K. Mechanism of the combined antitumor effect of natural human tumor necrosis factor-alpha and natural human interferon-alpha on cell cycle progression. Jpn J Cancer Res. 1991 Jan;82(1):118–126. doi: 10.1111/j.1349-7006.1991.tb01754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Naidu K. A., Wiranowska M., Phuphanich S., Prockop L. D. Modulation of glioma cell growth and 5-lipoxygenase expression by interferon. Anticancer Res. 1996 Nov-Dec;16(6B):3475–3482. [PubMed] [Google Scholar]
  31. Nichols T. C., Guthridge J. M., Karp D. R., Molina H., Fletcher D. R., Holers V. M. Gamma-glutamyl transpeptidase, an ecto-enzyme regulator of intracellular redox potential, is a component of TM4 signal transduction complexes. Eur J Immunol. 1998 Dec;28(12):4123–4129. doi: 10.1002/(SICI)1521-4141(199812)28:12<4123::AID-IMMU4123>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  32. Ouchida M., Ohno T., Fujimura Y., Rao V. N., Reddy E. S. Loss of tumorigenicity of Ewing's sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene. 1995 Sep 21;11(6):1049–1054. [PubMed] [Google Scholar]
  33. Preisler H. D., Gopal V., Banavali S. D., Finke D., Bokari S. A. Multiparameter assessment of the cell cycle effects of bioactive and cytotoxic agents. Cancer Res. 1992 Aug 1;52(15):4090–4095. [PubMed] [Google Scholar]
  34. Qin X. Q., Runkel L., Deck C., DeDios C., Barsoum J. Interferon-beta induces S phase accumulation selectively in human transformed cells. J Interferon Cytokine Res. 1997 Jun;17(6):355–367. doi: 10.1089/jir.1997.17.355. [DOI] [PubMed] [Google Scholar]
  35. Ramana C. V., Chatterjee-Kishore M., Nguyen H., Stark G. R. Complex roles of Stat1 in regulating gene expression. Oncogene. 2000 May 15;19(21):2619–2627. doi: 10.1038/sj.onc.1203525. [DOI] [PubMed] [Google Scholar]
  36. Remvikos Y., Tominaga O., Hammel P., Laurent-Puig P., Salmon R. J., Dutrillaux B., Thomas G. Increased p53 protein content of colorectal tumours correlates with poor survival. Br J Cancer. 1992 Oct;66(4):758–764. doi: 10.1038/bjc.1992.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Riemann D., Kehlen A., Langner J. Stimulation of the expression and the enzyme activity of aminopeptidase N/CD13 and dipeptidylpeptidase IV/CD26 on human renal cell carcinoma cells and renal tubular epithelial cells by T cell-derived cytokines, such as IL-4 and IL-13. Clin Exp Immunol. 1995 May;100(2):277–283. doi: 10.1111/j.1365-2249.1995.tb03665.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rosolen A., Todesco A., Colamonici O. R., Basso G., Frascella E. Expression of type I interferon receptor in solid tumors of childhood. Mod Pathol. 1997 Jan;10(1):55–61. [PubMed] [Google Scholar]
  39. Sancéau J., Hiscott J., Delattre O., Wietzerbin J. IFN-beta induces serine phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene. 2000 Jul 13;19(30):3372–3383. doi: 10.1038/sj.onc.1203670. [DOI] [PubMed] [Google Scholar]
  40. Seidel H. M., Lamb P., Rosen J. Pharmaceutical intervention in the JAK/STAT signaling pathway. Oncogene. 2000 May 15;19(21):2645–2656. doi: 10.1038/sj.onc.1203550. [DOI] [PubMed] [Google Scholar]
  41. Tanaka K., Iwakuma T., Harimaya K., Sato H., Iwamoto Y. EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells. J Clin Invest. 1997 Jan 15;99(2):239–247. doi: 10.1172/JCI119152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tate S. S., Meister A. gamma-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem. 1981 Sep 25;39:357–368. doi: 10.1007/BF00232585. [DOI] [PubMed] [Google Scholar]
  43. Tiefenbrun N., Melamed D., Levy N., Resnitzky D., Hoffman I., Reed S. I., Kimchi A. Alpha interferon suppresses the cyclin D3 and cdc25A genes, leading to a reversible G0-like arrest. Mol Cell Biol. 1996 Jul;16(7):3934–3944. doi: 10.1128/mcb.16.7.3934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tossing G. New developments in interferon therapy. Eur J Med Res. 2001 Feb 28;6(2):47–65. [PubMed] [Google Scholar]
  45. Tsutsumi M., Sakamuro D., Takada A., Zang S. C., Furukawa T., Taniguchi N. Detection of a unique gamma-glutamyl transpeptidase messenger RNA species closely related to the development of hepatocellular carcinoma in humans: a new candidate for early diagnosis of hepatocellular carcinoma. Hepatology. 1996 May;23(5):1093–1097. doi: 10.1002/hep.510230524. [DOI] [PubMed] [Google Scholar]
  46. Vaughan P. S., van Wijnen A. J., Stein J. L., Stein G. S. Interferon regulatory factors: growth control and histone gene regulation--it's not just interferon anymore. J Mol Med (Berl) 1997 May;75(5):348–359. doi: 10.1007/s001090050120. [DOI] [PubMed] [Google Scholar]
  47. Visvikis A., Pawlak A., Accaoui M. J., Ichino K., Leh H., Guellaen G., Wellman M. Structure of the 5' sequences of the human gamma-glutamyltransferase gene. Eur J Biochem. 2001 Jan;268(2):317–325. doi: 10.1046/j.1432-1033.2001.01881.x. [DOI] [PubMed] [Google Scholar]
  48. Whitfield J. B. Gamma glutamyl transferase. Crit Rev Clin Lab Sci. 2001 Aug;38(4):263–355. doi: 10.1080/20014091084227. [DOI] [PubMed] [Google Scholar]
  49. Woodlock T. J., Brown R., Mani M., Pompeo L., Hoffman H., Segel G. B., Silber R. Decreased L system amino acid transport and decreased gamma-glutamyl transpeptidase are independent processes in human chronic lymphocytic leukemia B-lymphocytes. J Cell Physiol. 1990 Nov;145(2):217–221. doi: 10.1002/jcp.1041450205. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES