Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):725–737. doi: 10.1042/BJ20020039

Solution structure and backbone dynamics of human epidermal-type fatty acid-binding protein (E-FABP).

Luis H Gutiérrez-González 1, Christian Ludwig 1, Carsten Hohoff 1, Martin Rademacher 1, Thorsten Hanhoff 1, Heinz Rüterjans 1, Friedrich Spener 1, Christian Lücke 1
PMCID: PMC1222622  PMID: 12049637

Abstract

Human epidermal-type fatty acid-binding protein (E-FABP) belongs to a family of intracellular 14-15 kDa lipid-binding proteins, whose functions have been associated with fatty acid signalling, cell growth, regulation and differentiation. As a contribution to understanding the structure-function relationship, we report in the present study features of its solution structure and backbone dynamics determined by NMR spectroscopy. Applying multi-dimensional high-resolution NMR techniques on unlabelled and 15N-enriched recombinant human E-FABP, the 1H and 15N resonance assignments were completed. On the basis of 2008 distance restraints, the three-dimensional solution structure of human E-FABP was subsequently obtained (backbone atom root-mean-square deviation of 0.92+/-0.11 A; where 1 A=0.1 nm), consisting mainly of 10 anti-parallel beta-strands that form a beta-barrel structure. 15N relaxation experiments (T1, T2 and heteronuclear nuclear Overhauser effects) at 500, 600 and 800 MHz provided information on the internal dynamics of the protein backbone. Nearly all non-terminal backbone amide groups showed order parameters S(2)>0.8, with an average value of 0.88+/-0.04, suggesting a uniformly low backbone mobility in the nanosecond-to-picosecond time range. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the beta-sheet structure and the conformational exchange in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics elaborated in the present study differ markedly from those of the phylogenetically closely related heart-type FABP and the more distantly related ileal lipid-binding protein, implying a strong interdependence with the overall protein stability and possibly also with the ligand-binding affinity for members of the lipid-binding protein family.

Full Text

The Full Text of this article is available as a PDF (419.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akke M., Carr P. A., Palmer A. G., 3rd Heteronuclear-correlation NMR spectroscopy with simultaneous isotope filtration, quadrature detection, and sensitivity enhancement using z rotations. J Magn Reson B. 1994 Jul;104(3):298–302. doi: 10.1006/jmrb.1994.1090. [DOI] [PubMed] [Google Scholar]
  2. Bass N. M. The cellular fatty acid binding proteins: aspects of structure, regulation, and function. Int Rev Cytol. 1988;111:143–184. doi: 10.1016/s0074-7696(08)61733-7. [DOI] [PubMed] [Google Scholar]
  3. Celis J. E., Rasmussen H. H., Vorum H., Madsen P., Honoré B., Wolf H., Orntoft T. F. Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. J Urol. 1996 Jun;155(6):2105–2112. [PubMed] [Google Scholar]
  4. Constantine K. L., Friedrichs M. S., Wittekind M., Jamil H., Chu C. H., Parker R. A., Goldfarb V., Mueller L., Farmer B. T., 2nd Backbone and side chain dynamics of uncomplexed human adipocyte and muscle fatty acid-binding proteins. Biochemistry. 1998 Jun 2;37(22):7965–7980. doi: 10.1021/bi980203o. [DOI] [PubMed] [Google Scholar]
  5. Cowan S. W., Newcomer M. E., Jones T. A. Crystallographic studies on a family of cellular lipophilic transport proteins. Refinement of P2 myelin protein and the structure determination and refinement of cellular retinol-binding protein in complex with all-trans-retinol. J Mol Biol. 1993 Apr 20;230(4):1225–1246. doi: 10.1006/jmbi.1993.1238. [DOI] [PubMed] [Google Scholar]
  6. Dauber-Osguthorpe P., Roberts V. A., Osguthorpe D. J., Wolff J., Genest M., Hagler A. T. Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins. 1988;4(1):31–47. doi: 10.1002/prot.340040106. [DOI] [PubMed] [Google Scholar]
  7. Delva L., Bastie J. N., Rochette-Egly C., Kraïba R., Balitrand N., Despouy G., Chambon P., Chomienne C. Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol. 1999 Oct;19(10):7158–7167. doi: 10.1128/mcb.19.10.7158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Farooqui J. Z., Robb E., Boyce S. T., Warden G. D., Nordlund J. J. Isolation of a unique melanogenic inhibitor from human skin xenografts: initial in vitro and in vivo characterization. J Invest Dermatol. 1995 May;104(5):739–743. doi: 10.1111/1523-1747.ep12606972. [DOI] [PubMed] [Google Scholar]
  9. Garcia de la Torre J. G., Bloomfield V. A. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q Rev Biophys. 1981 Feb;14(1):81–139. doi: 10.1017/s0033583500002080. [DOI] [PubMed] [Google Scholar]
  10. Glatz J. F., Veerkamp J. H. Removal of fatty acids from serum albumin by Lipidex 1000 chromatography. J Biochem Biophys Methods. 1983 Aug;8(1):57–61. doi: 10.1016/0165-022x(83)90021-0. [DOI] [PubMed] [Google Scholar]
  11. Güntert P., Braun W., Wüthrich K. Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol. 1991 Feb 5;217(3):517–530. doi: 10.1016/0022-2836(91)90754-t. [DOI] [PubMed] [Google Scholar]
  12. Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol. 1997 Oct 17;273(1):283–298. doi: 10.1006/jmbi.1997.1284. [DOI] [PubMed] [Google Scholar]
  13. Hagens G., Masouyé I., Augsburger E., Hotz R., Saurat J. H., Siegenthaler G. Calcium-binding protein S100A7 and epidermal-type fatty acid-binding protein are associated in the cytosol of human keratinocytes. Biochem J. 1999 Apr 15;339(Pt 2):419–427. [PMC free article] [PubMed] [Google Scholar]
  14. Helledie T., Antonius M., Sorensen R. V., Hertzel A. V., Bernlohr D. A., Kølvraa S., Kristiansen K., Mandrup S. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm. J Lipid Res. 2000 Nov;41(11):1740–1751. [PubMed] [Google Scholar]
  15. Hodsdon M. E., Cistola D. P. Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278–2290. doi: 10.1021/bi962018l. [DOI] [PubMed] [Google Scholar]
  16. Hodsdon M. E., Ponder J. W., Cistola D. P. The NMR solution structure of intestinal fatty acid-binding protein complexed with palmitate: application of a novel distance geometry algorithm. J Mol Biol. 1996 Dec 6;264(3):585–602. doi: 10.1006/jmbi.1996.0663. [DOI] [PubMed] [Google Scholar]
  17. Hohoff C., Börchers T., Rüstow B., Spener F., van Tilbeurgh H. Expression, purification, and crystal structure determination of recombinant human epidermal-type fatty acid binding protein. Biochemistry. 1999 Sep 21;38(38):12229–12239. doi: 10.1021/bi990305u. [DOI] [PubMed] [Google Scholar]
  18. Kaikaus R. M., Bass N. M., Ockner R. K. Functions of fatty acid binding proteins. Experientia. 1990 Jun 15;46(6):617–630. doi: 10.1007/BF01939701. [DOI] [PubMed] [Google Scholar]
  19. Kay L. E., Torchia D. A., Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989 Nov 14;28(23):8972–8979. doi: 10.1021/bi00449a003. [DOI] [PubMed] [Google Scholar]
  20. Kitamura K., Suzuki M., Suzuki A., Uyemura K. The complete amino acid sequence of the P2 protein in bovine peripheral nerve myelin. FEBS Lett. 1980 Jun 16;115(1):27–30. doi: 10.1016/0014-5793(80)80719-8. [DOI] [PubMed] [Google Scholar]
  21. Lassen D., Lücke C., Kveder M., Mesgarzadeh A., Schmidt J. M., Specht B., Lezius A., Spener F., Rüterjans H. Three-dimensional structure of bovine heart fatty-acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy. Eur J Biochem. 1995 May 15;230(1):266–280. doi: 10.1111/j.1432-1033.1995.tb20560.x. [DOI] [PubMed] [Google Scholar]
  22. Lu J., Lin C. L., Tang C., Ponder J. W., Kao J. L., Cistola D. P., Li E. Binding of retinol induces changes in rat cellular retinol-binding protein II conformation and backbone dynamics. J Mol Biol. 2000 Jul 14;300(3):619–632. doi: 10.1006/jmbi.2000.3883. [DOI] [PubMed] [Google Scholar]
  23. Lücke C., Fushman D., Ludwig C., Hamilton J. A., Sacchettini J. C., Rüterjans H. A comparative study of the backbone dynamics of two closely related lipid binding proteins: bovine heart fatty acid binding protein and porcine ileal lipid binding protein. Mol Cell Biochem. 1999 Feb;192(1-2):109–121. [PubMed] [Google Scholar]
  24. Lücke C., Lassen D., Kreienkamp H. J., Spener F., Rüterjans H. Sequence-specific 1H-NMR assignment and determination of the secondary structure of bovine heart fatty-acid-binding protein. Eur J Biochem. 1992 Dec 15;210(3):901–910. doi: 10.1111/j.1432-1033.1992.tb17494.x. [DOI] [PubMed] [Google Scholar]
  25. Lücke C., Rademacher M., Zimmerman A. W., van Moerkerk H. T., Veerkamp J. H., Rüterjans H. Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP). Biochem J. 2001 Mar 1;354(Pt 2):259–266. doi: 10.1042/0264-6021:3540259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lücke C., Zhang F., Rüterjans H., Hamilton J. A., Sacchettini J. C. Flexibility is a likely determinant of binding specificity in the case of ileal lipid binding protein. Structure. 1996 Jul 15;4(7):785–800. doi: 10.1016/s0969-2126(96)00086-x. [DOI] [PubMed] [Google Scholar]
  27. Madsen P., Rasmussen H. H., Leffers H., Honoré B., Celis J. E. Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J Invest Dermatol. 1992 Sep;99(3):299–305. doi: 10.1111/1523-1747.ep12616641. [DOI] [PubMed] [Google Scholar]
  28. Mandel A. M., Akke M., Palmer A. G., 3rd Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol. 1995 Feb 10;246(1):144–163. doi: 10.1006/jmbi.1994.0073. [DOI] [PubMed] [Google Scholar]
  29. Nicholls A., Sharp K. A., Honig B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins. 1991;11(4):281–296. doi: 10.1002/prot.340110407. [DOI] [PubMed] [Google Scholar]
  30. Sacchettini J. C., Gordon J. I., Banaszak L. J. Crystal structure of rat intestinal fatty-acid-binding protein. Refinement and analysis of the Escherichia coli-derived protein with bound palmitate. J Mol Biol. 1989 Jul 20;208(2):327–339. doi: 10.1016/0022-2836(89)90392-6. [DOI] [PubMed] [Google Scholar]
  31. Sacchettini J. C., Scapin G., Gopaul D., Gordon J. I. Refinement of the structure of Escherichia coli-derived rat intestinal fatty acid binding protein with bound oleate to 1.75-A resolution. Correlation with the structures of the apoprotein and the protein with bound palmitate. J Biol Chem. 1992 Nov 25;267(33):23534–23545. [PubMed] [Google Scholar]
  32. Scapin G., Young A. C., Kromminga A., Veerkamp J. H., Gordon J. I., Sacchettini J. C. High resolution X-ray studies of mammalian intestinal and muscle fatty acid-binding proteins provide an opportunity for defining the chemical nature of fatty acid: protein interactions. Mol Cell Biochem. 1993 Jun 9;123(1-2):3–13. doi: 10.1007/BF01076469. [DOI] [PubMed] [Google Scholar]
  33. Siegenthaler G., Hotz R., Chatellard-Gruaz D., Didierjean L., Hellman U., Saurat J. H. Purification and characterization of the human epidermal fatty acid-binding protein: localization during epidermal cell differentiation in vivo and in vitro. Biochem J. 1994 Sep 1;302(Pt 2):363–371. doi: 10.1042/bj3020363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stone M. J., Fairbrother W. J., Palmer A. G., 3rd, Reizer J., Saier M. H., Jr, Wright P. E. Backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry. 1992 May 12;31(18):4394–4406. doi: 10.1021/bi00133a003. [DOI] [PubMed] [Google Scholar]
  35. Veerkamp J. H., Maatman R. G. Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog Lipid Res. 1995;34(1):17–52. doi: 10.1016/0163-7827(94)00005-7. [DOI] [PubMed] [Google Scholar]
  36. Veerkamp J. H., Zimmerman A. W. Fatty acid-binding proteins of nervous tissue. J Mol Neurosci. 2001 Apr-Jun;16(2-3):133–157. doi: 10.1385/JMN:16:2-3:133. [DOI] [PubMed] [Google Scholar]
  37. Wang L., Li Y., Abildgaard F., Markley J. L., Yan H. NMR solution structure of type II human cellular retinoic acid binding protein: implications for ligand binding. Biochemistry. 1998 Sep 15;37(37):12727–12736. doi: 10.1021/bi9808924. [DOI] [PubMed] [Google Scholar]
  38. Watson P. H., Leygue E. R., Murphy L. C. Psoriasin (S100A7). Int J Biochem Cell Biol. 1998 May;30(5):567–571. doi: 10.1016/s1357-2725(97)00066-6. [DOI] [PubMed] [Google Scholar]
  39. Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
  40. Wolfrum C., Borrmann C. M., Borchers T., Spener F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha - and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2323–2328. doi: 10.1073/pnas.051619898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wolfrum C., Ellinghaus P., Fobker M., Seedorf U., Assmann G., Börchers T., Spener F. Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. J Lipid Res. 1999 Apr;40(4):708–714. [PubMed] [Google Scholar]
  42. Wüthrich K., Billeter M., Braun W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J Mol Biol. 1983 Oct 5;169(4):949–961. doi: 10.1016/s0022-2836(83)80144-2. [DOI] [PubMed] [Google Scholar]
  43. Yang Y., Spitzer E., Kenney N., Zschiesche W., Li M., Kromminga A., Müller T., Spener F., Lezius A., Veerkamp J. H. Members of the fatty acid binding protein family are differentiation factors for the mammary gland. J Cell Biol. 1994 Nov;127(4):1097–1109. doi: 10.1083/jcb.127.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zhang F., Lücke C., Baier L. J., Sacchettini J. C., Hamilton J. A. Solution structure of human intestinal fatty acid binding protein: implications for ligand entry and exit. J Biomol NMR. 1997 Apr;9(3):213–228. doi: 10.1023/a:1018666522787. [DOI] [PubMed] [Google Scholar]
  45. Zimmerman A. W., van Moerkerk H. T., Veerkamp J. H. Ligand specificity and conformational stability of human fatty acid-binding proteins. Int J Biochem Cell Biol. 2001 Sep;33(9):865–876. doi: 10.1016/s1357-2725(01)00070-x. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Additional structural table
bj3640725add.pdf (49.5KB, pdf)

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES