Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):777–786. doi: 10.1042/BJ20011361

Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function.

Heather Sadlish 1, Frederick M R Williams 1, Wayne F Flintoff 1
PMCID: PMC1222627  PMID: 12049642

Abstract

The reduced folate carrier (RFC) protein has a secondary structure consistent with the predicted 12 transmembrane (TM) domains, intracellular N- and C-termini and a large cytoplasmic loop between TM6 and TM7. In the present study, the role of the cytoplasmic domains in substrate transport and protein biogenesis were examined using an array of hamster RFC deletion mutants fused to enhanced green fluorescent protein and expressed in Chinese hamster ovary cells. The N- and C-terminal tails were removed both individually and together, or the large cytoplasmic loop was modified such that the domain size and role of conserved sequences could be examined. The loss of the N- or C-terminal tails did not appear to significantly disrupt protein function, although both termini appeared to have a role in the efficiency with which molecules exited the endoplasmic reticulum to localize at the plasma membrane. There appeared to be both size and sequence requirements for the intracellular loop, which are able to drastically affect protein stability and function unless met. Furthermore, there might be an indirect role for the loop in substrate translocation, since even moderate changes significantly reduced the V(max) for methotrexate transport. Although these cytoplasmic domains do not appear to be absolutely essential for substrate transport, each one is important for biogenesis and localization.

Full Text

The Full Text of this article is available as a PDF (370.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo H. P., Grimaldi M. E., García Arguinzonis M. I. Deletions in the N-terminal segment of the plasma membrane Ca(2+) pump impair the expression of a correctly folded functional enzyme. Biochemistry. 2000 Dec 5;39(48):14893–14899. doi: 10.1021/bi001222c. [DOI] [PubMed] [Google Scholar]
  2. Barrett M. P., Walmsley A. R., Gould G. W. Structure and function of facilitative sugar transporters. Curr Opin Cell Biol. 1999 Aug;11(4):496–502. doi: 10.1016/s0955-0674(99)80072-6. [DOI] [PubMed] [Google Scholar]
  3. Bibi E., Stearns S. M., Kaback H. R. The N-terminal 22 amino acid residues in the lactose permease of Escherichia coli are not obligatory for membrane insertion or transport activity. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3180–3184. doi: 10.1073/pnas.89.8.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braithwaite S. P., Meyer G., Henley J. M. Interactions between AMPA receptors and intracellular proteins. Neuropharmacology. 2000 Apr 3;39(6):919–930. doi: 10.1016/s0028-3908(99)00171-9. [DOI] [PubMed] [Google Scholar]
  5. Brigle K. E., Spinella M. J., Sierra E. E., Goldman I. D. Characterization of a mutation in the reduced folate carrier in a transport defective L1210 murine leukemia cell line. J Biol Chem. 1995 Sep 29;270(39):22974–22979. doi: 10.1074/jbc.270.39.22974. [DOI] [PubMed] [Google Scholar]
  6. Brigle K. E., Spinella M. J., Sierra E. E., Goldman I. D. Organization of the murine reduced folate carrier gene and identification of variant splice forms. Biochim Biophys Acta. 1997 Aug 7;1353(2):191–198. doi: 10.1016/s0167-4781(97)00082-1. [DOI] [PubMed] [Google Scholar]
  7. Carrasco N., Herzlinger D., Dechiara S., Danho W., Kaback H. R. Topology of the lac permease protein in the membrane of Escherichia coli. Ann N Y Acad Sci. 1985;456:305–306. doi: 10.1111/j.1749-6632.1985.tb14880.x. [DOI] [PubMed] [Google Scholar]
  8. Chancy C. D., Kekuda R., Huang W., Prasad P. D., Kuhnel J. M., Sirotnak F. M., Roon P., Ganapathy V., Smith S. B. Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor alpha in mammalian retinal pigment epithelium. J Biol Chem. 2000 Jul 7;275(27):20676–20684. doi: 10.1074/jbc.M002328200. [DOI] [PubMed] [Google Scholar]
  9. Drori S., Sprecher H., Shemer G., Jansen G., Goldman I. D., Assaraf Y. G. Characterization of a human alternatively spliced truncated reduced folate carrier increasing folate accumulation in parental leukemia cells. Eur J Biochem. 2000 Feb;267(3):690–702. doi: 10.1046/j.1432-1327.2000.01049.x. [DOI] [PubMed] [Google Scholar]
  10. Ferguson P. L., Flintoff W. F. Topological and functional analysis of the human reduced folate carrier by hemagglutinin epitope insertion. J Biol Chem. 1999 Jun 4;274(23):16269–16278. doi: 10.1074/jbc.274.23.16269. [DOI] [PubMed] [Google Scholar]
  11. Flintoff W. F., Davidson S. V., Siminovitch L. Isolation and partial characterization of three methotrexate-resistant phenotypes from Chinese hamster ovary cells. Somatic Cell Genet. 1976 May;2(3):245–261. doi: 10.1007/BF01538963. [DOI] [PubMed] [Google Scholar]
  12. Flintoff W. F., Nagainis C. R. Transport of methotrexate in Chinese hamster ovary cells: a mutant defective in methotrexate uptake and cell binding. Arch Biochem Biophys. 1983 Jun;223(2):433–440. doi: 10.1016/0003-9861(83)90607-0. [DOI] [PubMed] [Google Scholar]
  13. Flintoff W. F., Spindler S. M., Siminovitch L. Genetic characterization of methotrexate-resistant chinese hamster ovary cells. In Vitro. 1976 Nov;12(11):749–757. doi: 10.1007/BF02835450. [DOI] [PubMed] [Google Scholar]
  14. Foster B. A., Coffey H. A., Morin M. J., Rastinejad F. Pharmacological rescue of mutant p53 conformation and function. Science. 1999 Dec 24;286(5449):2507–2510. doi: 10.1126/science.286.5449.2507. [DOI] [PubMed] [Google Scholar]
  15. Gifford A. J., Kavallaris M., Madafiglio J., Matherly L. H., Stewart B. W., Haber M., Norris M. D. P-glycoprotein-mediated methotrexate resistance in CCRF-CEM sublines deficient in methotrexate accumulation due to a point mutation in the reduced folate carrier gene. Int J Cancer. 1998 Oct 5;78(2):176–181. doi: 10.1002/(sici)1097-0215(19981005)78:2<176::aid-ijc10>3.0.co;2-9. [DOI] [PubMed] [Google Scholar]
  16. Gorlick R., Goker E., Trippett T., Steinherz P., Elisseyeff Y., Mazumdar M., Flintoff W. F., Bertino J. R. Defective transport is a common mechanism of acquired methotrexate resistance in acute lymphocytic leukemia and is associated with decreased reduced folate carrier expression. Blood. 1997 Feb 1;89(3):1013–1018. [PubMed] [Google Scholar]
  17. Gotoh N., Kusumi T., Tsujimoto H., Wada T., Nishino T. Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa. FEBS Lett. 1999 Sep 10;458(1):32–36. doi: 10.1016/s0014-5793(99)01116-3. [DOI] [PubMed] [Google Scholar]
  18. Haardt M., Benharouga M., Lechardeur D., Kartner N., Lukacs G. L. C-terminal truncations destabilize the cystic fibrosis transmembrane conductance regulator without impairing its biogenesis. A novel class of mutation. J Biol Chem. 1999 Jul 30;274(31):21873–21877. doi: 10.1074/jbc.274.31.21873. [DOI] [PubMed] [Google Scholar]
  19. Johnson A. O., Lampson M. A., McGraw T. E. A di-leucine sequence and a cluster of acidic amino acids are required for dynamic retention in the endosomal recycling compartment of fibroblasts. Mol Biol Cell. 2001 Feb;12(2):367–381. doi: 10.1091/mbc.12.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kumar C. K., Nguyen T. T., Gonzales F. B., Said H. M. Comparison of intestinal folate carrier clone expressed in IEC-6 cells and in Xenopus oocytes. Am J Physiol. 1998 Jan;274(1 Pt 1):C289–C294. doi: 10.1152/ajpcell.1998.274.1.C289. [DOI] [PubMed] [Google Scholar]
  21. Loo T. W., Clarke D. M. Superfolding of the partially unfolded core-glycosylated intermediate of human P-glycoprotein into the mature enzyme is promoted by substrate-induced transmembrane domain interactions. J Biol Chem. 1998 Jun 12;273(24):14671–14674. doi: 10.1074/jbc.273.24.14671. [DOI] [PubMed] [Google Scholar]
  22. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000 Sep-Oct;71(1-2):121–138. doi: 10.1006/mgme.2000.3027. [DOI] [PubMed] [Google Scholar]
  23. Ma D., Zerangue N., Lin Y. F., Collins A., Yu M., Jan Y. N., Jan L. Y. Role of ER export signals in controlling surface potassium channel numbers. Science. 2001 Jan 12;291(5502):316–319. doi: 10.1126/science.291.5502.316. [DOI] [PubMed] [Google Scholar]
  24. Matherly L. H., Taub J. W., Ravindranath Y., Proefke S. A., Wong S. C., Gimotty P., Buck S., Wright J. E., Rosowsky A. Elevated dihydrofolate reductase and impaired methotrexate transport as elements in methotrexate resistance in childhood acute lymphoblastic leukemia. Blood. 1995 Jan 15;85(2):500–509. [PubMed] [Google Scholar]
  25. McKenna E., Hardy D., Pastore J. C., Kaback H. R. Sequential truncation of the lactose permease over a three-amino acid sequence near the carboxyl terminus leads to progressive loss of activity and stability. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):2969–2973. doi: 10.1073/pnas.88.8.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murray R. C., Williams F. M., Flintoff W. F. Structural organization of the reduced folate carrier gene in Chinese hamster ovary cells. J Biol Chem. 1996 Aug 9;271(32):19174–19179. doi: 10.1074/jbc.271.32.19174. [DOI] [PubMed] [Google Scholar]
  27. Roepe P. D., Zbar R. I., Sarkar H. K., Kaback H. R. A five-residue sequence near the carboxyl terminus of the polytopic membrane protein lac permease is required for stability within the membrane. Proc Natl Acad Sci U S A. 1989 Jun;86(11):3992–3996. doi: 10.1073/pnas.86.11.3992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sadlish H., Murray R. C., Williams F. M., Flintoff W. F. Mutations in the reduced-folate carrier affect protein localization and stability. Biochem J. 2000 Mar 1;346(Pt 2):509–518. [PMC free article] [PubMed] [Google Scholar]
  29. Said H. M., Nguyen T. T., Dyer D. L., Cowan K. H., Rubin S. A. Intestinal folate transport: identification of a cDNA involved in folate transport and the functional expression and distribution of its mRNA. Biochim Biophys Acta. 1996 Jun 11;1281(2):164–172. doi: 10.1016/0005-2736(96)00005-3. [DOI] [PubMed] [Google Scholar]
  30. Schülein R., Hermosilla R., Oksche A., Dehe M., Wiesner B., Krause G., Rosenthal W. A dileucine sequence and an upstream glutamate residue in the intracellular carboxyl terminus of the vasopressin V2 receptor are essential for cell surface transport in COS.M6 cells. Mol Pharmacol. 1998 Sep;54(3):525–535. doi: 10.1124/mol.54.3.525. [DOI] [PubMed] [Google Scholar]
  31. Scott D. B., Blanpied T. A., Swanson G. T., Zhang C., Ehlers M. D. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci. 2001 May 1;21(9):3063–3072. doi: 10.1523/JNEUROSCI.21-09-03063.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sharina I. G., Zhao R., Wang Y., Babani S., Goldman I. D. Mutational analysis of the functional role of conserved arginine and lysine residues in transmembrane domains of the murine reduced folate carrier. Mol Pharmacol. 2001 May;59(5):1022–1028. doi: 10.1124/mol.59.5.1022. [DOI] [PubMed] [Google Scholar]
  33. Sharma N., Crane A., Clement J. P., 4th, Gonzalez G., Babenko A. P., Bryan J., Aguilar-Bryan L. The C terminus of SUR1 is required for trafficking of KATP channels. J Biol Chem. 1999 Jul 16;274(29):20628–20632. doi: 10.1074/jbc.274.29.20628. [DOI] [PubMed] [Google Scholar]
  34. Subramanian V. S., Marchant J. S., Parker I., Said H. M. Intracellular trafficking/membrane targeting of human reduced folate carrier expressed in Xenopus oocytes. Am J Physiol Gastrointest Liver Physiol. 2001 Dec;281(6):G1477–G1486. doi: 10.1152/ajpgi.2001.281.6.G1477. [DOI] [PubMed] [Google Scholar]
  35. Underhill T. M., Flintoff W. F. Mutant Chinese hamster ovary cells with defective methotrexate uptake are distinguishable by reversion analysis. Somat Cell Mol Genet. 1989 Jan;15(1):49–59. doi: 10.1007/BF01534669. [DOI] [PubMed] [Google Scholar]
  36. Wang Y., Zhao R., Russell R. G., Goldman I. D. Localization of the murine reduced folate carrier as assessed by immunohistochemical analysis. Biochim Biophys Acta. 2001 Jul 2;1513(1):49–54. doi: 10.1016/s0005-2736(01)00340-6. [DOI] [PubMed] [Google Scholar]
  37. Weinglass A. B., Kaback H. R. The central cytoplasmic loop of the major facilitator superfamily of transport proteins governs efficient membrane insertion. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8938–8943. doi: 10.1073/pnas.140224497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williams F. M., Flintoff W. F. Isolation of a human cDNA that complements a mutant hamster cell defective in methotrexate uptake. J Biol Chem. 1995 Feb 17;270(7):2987–2992. doi: 10.1074/jbc.270.7.2987. [DOI] [PubMed] [Google Scholar]
  39. Williams F. M., Flintoff W. F. Structural organization of the human reduced folate carrier gene: evidence for 5' heterogeneity in lymphoblast mRNA. Somat Cell Mol Genet. 1998 May;24(3):143–156. doi: 10.1023/b:scam.0000007117.50428.63. [DOI] [PubMed] [Google Scholar]
  40. Williams F. M., Murray R. C., Underhill T. M., Flintoff W. F. Isolation of a hamster cDNA clone coding for a function involved in methotrexate uptake. J Biol Chem. 1994 Feb 25;269(8):5810–5816. [PubMed] [Google Scholar]
  41. Wolin C. D., Kaback H. R. Estimating loop-helix interfaces in a polytopic membrane protein by deletion analysis. Biochemistry. 1999 Jun 29;38(26):8590–8597. doi: 10.1021/bi990650j. [DOI] [PubMed] [Google Scholar]
  42. Wong S. C., Proefke S. A., Bhushan A., Matherly L. H. Isolation of human cDNAs that restore methotrexate sensitivity and reduced folate carrier activity in methotrexate transport-defective Chinese hamster ovary cells. J Biol Chem. 1995 Jul 21;270(29):17468–17475. doi: 10.1074/jbc.270.29.17468. [DOI] [PubMed] [Google Scholar]
  43. Wong S. C., Zhang L., Witt T. L., Proefke S. A., Bhushan A., Matherly L. H. Impaired membrane transport in methotrexate-resistant CCRF-CEM cells involves early translation termination and increased turnover of a mutant reduced folate carrier. J Biol Chem. 1999 Apr 9;274(15):10388–10394. doi: 10.1074/jbc.274.15.10388. [DOI] [PubMed] [Google Scholar]
  44. Ye L., Jia Z., Jung T., Maloney P. C. Topology of OxlT, the oxalate transporter of Oxalobacter formigenes, determined by site-directed fluorescence labeling. J Bacteriol. 2001 Apr;183(8):2490–2496. doi: 10.1128/JB.183.8.2490-2496.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zerangue N., Schwappach B., Jan Y. N., Jan L. Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels. Neuron. 1999 Mar;22(3):537–548. doi: 10.1016/s0896-6273(00)80708-4. [DOI] [PubMed] [Google Scholar]
  46. Zhang L., Wong S. C., Matherly L. H. Structure and organization of the human reduced folate carrier gene. Biochim Biophys Acta. 1998 Nov 8;1442(2-3):389–393. doi: 10.1016/s0167-4781(98)00168-7. [DOI] [PubMed] [Google Scholar]
  47. Zhao R., Assaraf Y. G., Goldman I. D. A reduced folate carrier mutation produces substrate-dependent alterations in carrier mobility in murine leukemia cells and methotrexate resistance with conservation of growth in 5-formyltetrahydrofolate. J Biol Chem. 1998 Apr 3;273(14):7873–7879. doi: 10.1074/jbc.273.14.7873. [DOI] [PubMed] [Google Scholar]
  48. Zhao R., Gao F., Liu L., Goldman I. D. The reduced folate carrier in L1210 murine leukemia cells is a 58-kDa protein. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):7–10. doi: 10.1016/s0005-2736(00)00190-5. [DOI] [PubMed] [Google Scholar]
  49. Zhao R., Gao F., Wang P. J., Goldman I. D. Role of the amino acid 45 residue in reduced folate carrier function and ion-dependent transport as characterized by site-directed mutagenesis. Mol Pharmacol. 2000 Feb;57(2):317–323. [PubMed] [Google Scholar]
  50. Zhao R., Sharina I. G., Goldman I. D. Pattern of mutations that results in loss of reduced folate carrier function under antifolate selective pressure augmented by chemical mutagenesis. Mol Pharmacol. 1999 Jul;56(1):68–76. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES