Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):787–794. doi: 10.1042/BJ20020038

TcGPXII, a glutathione-dependent Trypanosoma cruzi peroxidase with substrate specificity restricted to fatty acid and phospholipid hydroperoxides, is localized to the endoplasmic reticulum.

Shane R Wilkinson 1, Martin C Taylor 1, Said Touitha 1, Isabel L Mauricio 1, David J Meyer 1, John M Kelly 1
PMCID: PMC1222628  PMID: 12049643

Abstract

Until recently, it had been thought that trypanosomes lack glutathione peroxidase activity. Here we report the subcellular localization and biochemical properties of a second glutathione-dependent peroxidase from Trypanosoma cruzi (TcGPXII). TcGPXII is a single-copy gene which encodes a 16 kDa protein that appears to be specifically dependent on glutathione as the source of reducing equivalents. Recombinant TcGPXII was purified and shown to have peroxidase activity towards a narrow substrate range, restricted to hydroperoxides of fatty acids and phospholipids. Analysis of the pathway revealed that TcGPXII activity could be readily saturated by glutathione and that the peroxidase functioned by a Ping Pong mechanism. Enzyme reduction was shown to be the rate-limiting step in this pathway. Using immunofluorescence, TcGPXII was shown to co-localize with a homologue of immunoglobulin heavy-chain binding protein (BiP), a protein restricted to the endoplasmic reticulum and Golgi. As the smooth endoplasmic reticulum is the site of phospholipid and fatty acid biosynthesis, this suggests that TcGPXII may play a specific role in the T. cruzi oxidative defence system by protecting newly synthesized lipids from peroxidation.

Full Text

The Full Text of this article is available as a PDF (213.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andres D. A., Rhodes J. D., Meisel R. L., Dixon J. E. Characterization of the carboxyl-terminal sequences responsible for protein retention in the endoplasmic reticulum. J Biol Chem. 1991 Aug 5;266(22):14277–14282. [PubMed] [Google Scholar]
  2. Ariyanayagam M. R., Fairlamb A. H. Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol Biochem Parasitol. 2001 Jul;115(2):189–198. doi: 10.1016/s0166-6851(01)00285-7. [DOI] [PubMed] [Google Scholar]
  3. Bangs J. D., Uyetake L., Brickman M. J., Balber A. E., Boothroyd J. C. Molecular cloning and cellular localization of a BiP homologue in Trypanosoma brucei. Divergent ER retention signals in a lower eukaryote. J Cell Sci. 1993 Aug;105(Pt 4):1101–1113. doi: 10.1242/jcs.105.4.1101. [DOI] [PubMed] [Google Scholar]
  4. Björnstedt M., Xue J., Huang W., Akesson B., Holmgren A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem. 1994 Nov 25;269(47):29382–29384. [PubMed] [Google Scholar]
  5. Boveris A., Sies H., Martino E. E., Docampo R., Turrens J. F., Stoppani A. O. Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J. 1980 Jun 15;188(3):643–648. doi: 10.1042/bj1880643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bánhegyi G., Lusini L., Puskás F., Rossi R., Fulceri R., Braun L., Mile V., di Simplicio P., Mandl J., Benedetti A. Preferential transport of glutathione versus glutathione disulfide in rat liver microsomal vesicles. J Biol Chem. 1999 Apr 30;274(18):12213–12216. doi: 10.1074/jbc.274.18.12213. [DOI] [PubMed] [Google Scholar]
  7. Carnieri E. G., Moreno S. N., Docampo R. Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol Biochem Parasitol. 1993 Sep;61(1):79–86. doi: 10.1016/0166-6851(93)90160-y. [DOI] [PubMed] [Google Scholar]
  8. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993 Dec;57(4):953–994. doi: 10.1128/mr.57.4.953-994.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clarkson A. B., Jr, Bienen E. J., Pollakis G., Grady R. W. Respiration of bloodstream forms of the parasite Trypanosoma brucei brucei is dependent on a plant-like alternative oxidase. J Biol Chem. 1989 Oct 25;264(30):17770–17776. [PubMed] [Google Scholar]
  10. Docampo R., Moreno S. N., Stoppani A. O., Leon W., Cruz F. S., Villalta F., Muniz R. F. Mechanism of nifurtimox toxicity in different forms of Trypanosoma cruzi. Biochem Pharmacol. 1981 Jul 15;30(14):1947–1951. doi: 10.1016/0006-2952(81)90204-5. [DOI] [PubMed] [Google Scholar]
  11. Docampo R. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact. 1990;73(1):1–27. doi: 10.1016/0009-2797(90)90106-w. [DOI] [PubMed] [Google Scholar]
  12. Docampo R., Stoppani A. O. Generation of superoxide anion and hydrogen peroxide induced by nifurtimox in Trypanosoma cruzi. Arch Biochem Biophys. 1979 Oct 1;197(1):317–321. doi: 10.1016/0003-9861(79)90251-0. [DOI] [PubMed] [Google Scholar]
  13. Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
  14. Flohé L., Brand I. Kinetics of glutathione peroxidase. Biochim Biophys Acta. 1969;191(3):541–549. doi: 10.1016/0005-2744(69)90347-7. [DOI] [PubMed] [Google Scholar]
  15. Flohé L., Hecht H. J., Steinert P. Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med. 1999 Nov;27(9-10):966–984. doi: 10.1016/s0891-5849(99)00172-0. [DOI] [PubMed] [Google Scholar]
  16. Gibson W. C., Miles M. A. The karyotype and ploidy of Trypanosoma cruzi. EMBO J. 1986 Jun;5(6):1299–1305. doi: 10.1002/j.1460-2075.1986.tb04359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Giulivi C., Turrens J. F., Boveris A. Chemiluminescence enhancement by trypanocidal drugs and by inhibitors of antioxidant enzymes in Trypanosoma cruzi. Mol Biochem Parasitol. 1988 Sep;30(3):243–251. doi: 10.1016/0166-6851(88)90093-x. [DOI] [PubMed] [Google Scholar]
  18. Grab D. J., Ito S., Kara U. A., Rovis L. Glycosyltransferase activities in Golgi complex and endoplasmic reticulum fractions isolated from African trypanosomes. J Cell Biol. 1984 Aug;99(2):569–577. doi: 10.1083/jcb.99.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Horiguchi H., Yurimoto H., Kato N., Sakai Y. Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem. 2001 Jan 30;276(17):14279–14288. doi: 10.1074/jbc.M011661200. [DOI] [PubMed] [Google Scholar]
  20. Hunter K. J., Le Quesne S. A., Fairlamb A. H. Identification and biosynthesis of N1,N9-bis(glutathionyl)aminopropylcadaverine (homotrypanothione) in Trypanosoma cruzi. Eur J Biochem. 1994 Dec 15;226(3):1019–1027. doi: 10.1111/j.1432-1033.1994.t01-1-01019.x. [DOI] [PubMed] [Google Scholar]
  21. Hwang C., Sinskey A. J., Lodish H. F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992 Sep 11;257(5076):1496–1502. doi: 10.1126/science.1523409. [DOI] [PubMed] [Google Scholar]
  22. Kelly J. M. Isolation of DNA and RNA from Leishmania. Methods Mol Biol. 1993;21:123–131. doi: 10.1385/0-89603-239-6:123. [DOI] [PubMed] [Google Scholar]
  23. Kelly J. M., Taylor M. C., Smith K., Hunter K. J., Fairlamb A. H. Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over-express trypanothione reductase. Sensitivity towards agents that are thought to induce oxidative stress. Eur J Biochem. 1993 Nov 15;218(1):29–37. doi: 10.1111/j.1432-1033.1993.tb18348.x. [DOI] [PubMed] [Google Scholar]
  24. Kendall G., Wilderspin A. F., Ashall F., Miles M. A., Kelly J. M. Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase does not conform to the 'hotspot' topogenic signal model. EMBO J. 1990 Sep;9(9):2751–2758. doi: 10.1002/j.1460-2075.1990.tb07462.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Krauth-Siegel R. L., Coombs G. H. Enzymes of parasite thiol metabolism as drug targets. Parasitol Today. 1999 Oct;15(10):404–409. doi: 10.1016/s0169-4758(99)01516-1. [DOI] [PubMed] [Google Scholar]
  26. Krepinsky K., Plaumann M., Martin W., Schnarrenberger C. Purification and cloning of chloroplast 6-phosphogluconate dehydrogenase from spinach. Cyanobacterial genes for chloroplast and cytosolic isoenzymes encoded in eukaryotic chromosomes. Eur J Biochem. 2001 May;268(9):2678–2686. doi: 10.1046/j.1432-1327.2001.02154.x. [DOI] [PubMed] [Google Scholar]
  27. Kubata B. K., Duszenko M., Kabututu Z., Rawer M., Szallies A., Fujimori K., Inui T., Nozaki T., Yamashita K., Horii T. Identification of a novel prostaglandin f(2alpha) synthase in Trypanosoma brucei. J Exp Med. 2000 Nov 6;192(9):1327–1338. doi: 10.1084/jem.192.9.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lopez J. A., Carvalho T. U., de Souza W., Flohé L., Guerrero S. A., Montemartini M., Kalisz H. M., Nogoceke E., Singh M., Alves M. J. Evidence for a trypanothione-dependent peroxidase system in Trypanosoma cruzi. Free Radic Biol Med. 2000 Mar 1;28(5):767–772. doi: 10.1016/s0891-5849(00)00159-3. [DOI] [PubMed] [Google Scholar]
  29. Maiorino M., Aumann K. D., Brigelius-Flohé R., Doria D., van den Heuvel J., McCarthy J., Roveri A., Ursini F., Flohé L. Probing the presumed catalytic triad of selenium-containing peroxidases by mutational analysis of phospholipid hydroperoxide glutathione peroxidase (PHGPx). Biol Chem Hoppe Seyler. 1995 Nov;376(11):651–660. doi: 10.1515/bchm3.1995.376.11.651. [DOI] [PubMed] [Google Scholar]
  30. Maiorino M., Gregolin C., Ursini F. Phospholipid hydroperoxide glutathione peroxidase. Methods Enzymol. 1990;186:448–457. doi: 10.1016/0076-6879(90)86139-m. [DOI] [PubMed] [Google Scholar]
  31. Marinho H. S., Antunes F., Pinto R. E. Role of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase in the reduction of lysophospholipid hydroperoxides. Free Radic Biol Med. 1997;22(5):871–883. doi: 10.1016/s0891-5849(96)00468-6. [DOI] [PubMed] [Google Scholar]
  32. McDowell M. A., Ransom D. M., Bangs J. D. Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei. Biochem J. 1998 Nov 1;335(Pt 3):681–689. doi: 10.1042/bj3350681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mehlotra R. K. Antioxidant defense mechanisms in parasitic protozoa. Crit Rev Microbiol. 1996;22(4):295–314. doi: 10.3109/10408419609105484. [DOI] [PubMed] [Google Scholar]
  34. Minotti G., Ikeda-Saito M. Bovine heart microsomes contain an Mr = 66,000 non-heme iron protein which stimulates NADPH oxidation. J Biol Chem. 1991 Oct 25;266(30):20011–20017. [PubMed] [Google Scholar]
  35. Moutiez M., Aumercier M., Schöneck R., Meziane-Cherif D., Lucas V., Aumercier P., Ouaissi A., Sergheraert C., Tartar A. Purification and characterization of a trypanothione-glutathione thioltransferase from Trypanosoma cruzi. Biochem J. 1995 Sep 1;310(Pt 2):433–437. doi: 10.1042/bj3100433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mullen R. T., Lisenbee C. S., Miernyk J. A., Trelease R. N. Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell. 1999 Nov;11(11):2167–2185. doi: 10.1105/tpc.11.11.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mullen R. T., Trelease R. N. The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem. 2000 May 26;275(21):16337–16344. doi: 10.1074/jbc.M001266200. [DOI] [PubMed] [Google Scholar]
  38. Okado-Matsumoto A., Matsumoto A., Fujii J., Taniguchi N. Peroxiredoxin IV is a secretable protein with heparin-binding properties under reduced conditions. J Biochem. 2000 Mar;127(3):493–501. doi: 10.1093/oxfordjournals.jbchem.a022632. [DOI] [PubMed] [Google Scholar]
  39. Rocher C., Lalanne J. L., Chaudière J. Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur J Biochem. 1992 May 1;205(3):955–960. doi: 10.1111/j.1432-1033.1992.tb16862.x. [DOI] [PubMed] [Google Scholar]
  40. Sakamoto H., Imai H., Nakagawa Y. Involvement of phospholipid hydroperoxide glutathione peroxidase in the modulation of prostaglandin D2 synthesis. J Biol Chem. 2000 Dec 22;275(51):40028–40035. doi: 10.1074/jbc.M003191200. [DOI] [PubMed] [Google Scholar]
  41. Scott D. A., de Souza W., Benchimol M., Zhong L., Lu H. G., Moreno S. N., Docampo R. Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem. 1998 Aug 21;273(34):22151–22158. doi: 10.1074/jbc.273.34.22151. [DOI] [PubMed] [Google Scholar]
  42. Sevier C. S., Cuozzo J. W., Vala A., Aslund F., Kaiser C. A. A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Nat Cell Biol. 2001 Oct;3(10):874–882. doi: 10.1038/ncb1001-874. [DOI] [PubMed] [Google Scholar]
  43. Shames S. L., Fairlamb A. H., Cerami A., Walsh C. T. Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases. Biochemistry. 1986 Jun 17;25(12):3519–3526. doi: 10.1021/bi00360a007. [DOI] [PubMed] [Google Scholar]
  44. Suh J. K., Poulsen L. L., Ziegler D. M., Robertus J. D. Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2687–2691. doi: 10.1073/pnas.96.6.2687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sztajer H., Gamain B., Aumann K. D., Slomianny C., Becker K., Brigelius-Flohé R., Flohé L. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem. 2000 Nov 21;276(10):7397–7403. doi: 10.1074/jbc.M008631200. [DOI] [PubMed] [Google Scholar]
  46. Tang L., Gounaris K., Griffiths C., Selkirk M. E. Heterologous expression and enzymatic properties of a selenium-independent glutathione peroxidase from the parasitic nematode Brugia pahangi. J Biol Chem. 1995 Aug 4;270(31):18313–18318. doi: 10.1074/jbc.270.31.18313. [DOI] [PubMed] [Google Scholar]
  47. Temperton N. J., Wilkinson S. R., Meyer D. J., Kelly J. M. Overexpression of superoxide dismutase in Trypanosoma cruzi results in increased sensitivity to the trypanocidal agents gentian violet and benznidazole. Mol Biochem Parasitol. 1998 Oct 30;96(1-2):167–176. doi: 10.1016/s0166-6851(98)00127-3. [DOI] [PubMed] [Google Scholar]
  48. Ursini F., Maiorino M., Brigelius-Flohé R., Aumann K. D., Roveri A., Schomburg D., Flohé L. Diversity of glutathione peroxidases. Methods Enzymol. 1995;252:38–53. doi: 10.1016/0076-6879(95)52007-4. [DOI] [PubMed] [Google Scholar]
  49. Ursini F., Maiorino M., Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta. 1985 Mar 29;839(1):62–70. doi: 10.1016/0304-4165(85)90182-5. [DOI] [PubMed] [Google Scholar]
  50. Waddell I. D., Zomerschoe A. G., Voice M. W., Burchell A. Cloning and expression of a hepatic microsomal glucose transport protein. Comparison with liver plasma-membrane glucose-transport protein GLUT 2. Biochem J. 1992 Aug 15;286(Pt 1):173–177. doi: 10.1042/bj2860173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wilkinson S. R., Meyer D. J., Kelly J. M. Biochemical characterization of a trypanosome enzyme with glutathione-dependent peroxidase activity. Biochem J. 2000 Dec 15;352(Pt 3):755–761. [PMC free article] [PubMed] [Google Scholar]
  52. Wilkinson S. R., Temperton N. J., Mondragon A., Kelly J. M. Distinct mitochondrial and cytosolic enzymes mediate trypanothione-dependent peroxide metabolism in Trypanosoma cruzi. J Biol Chem. 2000 Mar 17;275(11):8220–8225. doi: 10.1074/jbc.275.11.8220. [DOI] [PubMed] [Google Scholar]
  53. Wilkinson Shane R., Meyer David J., Taylor Martin C., Bromley Elizabeth V., Miles Michael A., Kelly John M. The Trypanosoma cruzi enzyme TcGPXI is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. J Biol Chem. 2002 Feb 12;277(19):17062–17071. doi: 10.1074/jbc.M111126200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES