Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):807–815. doi: 10.1042/BJ20020055

Multiple forms of the catalytic centre, CuZ, in the enzyme nitrous oxide reductase from Paracoccus pantotrophus.

Tim Rasmussen 1, Ben C Berks 1, Julea N Butt 1, Andrew J Thomson 1
PMCID: PMC1222630  PMID: 12049645

Abstract

Nitrous oxide reductase catalyses the reduction of nitrous oxide to dinitrogen at a unique tetranuclear copper site, called Cu(Z), which has a central inorganic sulphide ligand. Limited incubation with oxygen during the preparation of nitrous oxide reductase from Paracoccus pantotrophus results in changed redox properties of the catalytic centre by comparison with anaerobic preparations. While the anaerobically purified enzyme has a catalytic centre which performs a single electron step at a midpoint potential of E(m)=+60 mV versus the standard hydrogen electrode (n=1), the altered centre shows no redox change under similar experimental conditions. Spectroscopic properties of this 'redox fixed' centre are similar to spectra of the reduced 'redox active' form of CuZ, although the positions and intensities of a number of transitions are changed in the optical spectrum. These observations are interpreted in terms of two forms of the catalytic centre, called CuZ and CuZ*. The structural relationship between these forms is unclear. EPR and magnetic circular dichroism spectra suggest that the basic Cu4S structure is common to both. Curiously, steady-state activity of the aerobic enzyme preparation is slightly increased despite the fact the catalytic centre does not undergo detectable redox changes.

Full Text

The Full Text of this article is available as a PDF (185.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez M. L., Ai J., Zumft W., Sanders-Loehr J., Dooley D. M. Characterization of the copper-sulfur chromophores in nitrous oxide reductase by resonance raman spectroscopy: evidence for sulfur coordination in the catalytic cluster. J Am Chem Soc. 2001 Jan 31;123(4):576–587. doi: 10.1021/ja994322i. [DOI] [PubMed] [Google Scholar]
  2. Antholine W. E., Kastrau D. H., Steffens G. C., Buse G., Zumft W. G., Kroneck P. M. A comparative EPR investigation of the multicopper proteins nitrous-oxide reductase and cytochrome c oxidase. Eur J Biochem. 1992 Nov 1;209(3):875–881. doi: 10.1111/j.1432-1033.1992.tb17360.x. [DOI] [PubMed] [Google Scholar]
  3. Beinert H. Copper A of cytochrome c oxidase, a novel, long-embattled, biological electron-transfer site. Eur J Biochem. 1997 May 1;245(3):521–532. doi: 10.1111/j.1432-1033.1997.t01-1-00521.x. [DOI] [PubMed] [Google Scholar]
  4. Beinert H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem. 1983 Jun;131(2):373–378. doi: 10.1016/0003-2697(83)90186-0. [DOI] [PubMed] [Google Scholar]
  5. Bell L. C., Ferguson S. J. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha. Biochem J. 1991 Jan 15;273(Pt 2):423–427. doi: 10.1042/bj2730423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berks B. C., Baratta D., Richardson J., Ferguson S. J. Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. Eur J Biochem. 1993 Mar 1;212(2):467–476. doi: 10.1111/j.1432-1033.1993.tb17683.x. [DOI] [PubMed] [Google Scholar]
  7. Berks B. C., Ferguson S. J., Moir J. W., Richardson D. J. Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochim Biophys Acta. 1995 Dec 12;1232(3):97–173. doi: 10.1016/0005-2728(95)00092-5. [DOI] [PubMed] [Google Scholar]
  8. Brown K., Djinovic-Carugo K., Haltia T., Cabrito I., Saraste M., Moura J. J., Moura I., Tegoni M., Cambillau C. Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur. J Biol Chem. 2000 Dec 29;275(52):41133–41136. doi: 10.1074/jbc.M008617200. [DOI] [PubMed] [Google Scholar]
  9. Brown K., Tegoni M., Prudêncio M., Pereira A. S., Besson S., Moura J. J., Moura I., Cambillau C. A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol. 2000 Mar;7(3):191–195. doi: 10.1038/73288. [DOI] [PubMed] [Google Scholar]
  10. Charnock J. M., Dreusch A., Körner H., Neese F., Nelson J., Kannt A., Michel H., Garner C. D., Kroneck P. M., Zumft W. G. Structural investigations of the CuA centre of nitrous oxide reductase from Pseudomonas stutzeri by site-directed mutagenesis and X-ray absorption spectroscopy. Eur J Biochem. 2000 Mar;267(5):1368–1381. doi: 10.1046/j.1432-1327.2000.01131.x. [DOI] [PubMed] [Google Scholar]
  11. Coyle C. L., Zumft W. G., Kroneck P. M., Körner H., Jakob W. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur J Biochem. 1985 Dec 16;153(3):459–467. doi: 10.1111/j.1432-1033.1985.tb09324.x. [DOI] [PubMed] [Google Scholar]
  12. Farrar J. A., Thomson A. J., Cheesman M. R., Dooley D. M., Zumft W. G. A model of the copper centres of nitrous oxide reductase (Pseudomonas stutzeri). Evidence from optical, EPR and MCD spectroscopy. FEBS Lett. 1991 Dec 2;294(1-2):11–15. doi: 10.1016/0014-5793(91)81331-2. [DOI] [PubMed] [Google Scholar]
  13. Farrar J. A., Zumft W. G., Thomson A. J. CuA and CuZ are variants of the electron transfer center in nitrous oxide reductase. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9891–9896. doi: 10.1073/pnas.95.17.9891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ferretti S., Grossmann J. G., Hasnain S. S., Eady R. R., Smith B. E. Biochemical characterization and solution structure of nitrous oxide reductase from Alcaligenes xylosoxidans (NCIMB 11015). Eur J Biochem. 1999 Feb;259(3):651–659. doi: 10.1046/j.1432-1327.1999.00082.x. [DOI] [PubMed] [Google Scholar]
  15. Hulse C. L., Averill B. A. Isolation of a high specific activity pink, monomeric nitrous oxide reductase from Achromobacter cycloclastes. Biochem Biophys Res Commun. 1990 Jan 30;166(2):729–735. doi: 10.1016/0006-291x(90)90870-s. [DOI] [PubMed] [Google Scholar]
  16. Iwata S., Ostermeier C., Ludwig B., Michel H. Structure at 2.8 A resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature. 1995 Aug 24;376(6542):660–669. doi: 10.1038/376660a0. [DOI] [PubMed] [Google Scholar]
  17. Jafferji A., Sami M., Nuttall J., Ferguson S. J., Berks B. C., Fülöp V. Crystallization and preliminary X-ray analysis of nitrous oxide reductase from Paracoccus pantotrophus. Acta Crystallogr D Biol Crystallogr. 2000 May;56(Pt 5):653–655. doi: 10.1107/s0907444900003097. [DOI] [PubMed] [Google Scholar]
  18. Kristjansson J. K., Hollocher T. C. First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization. J Biol Chem. 1980 Jan 25;255(2):704–707. [PubMed] [Google Scholar]
  19. Kroneck P. M., Antholine W. A., Riester J., Zumft W. G. The cupric site in nitrous oxide reductase contains a mixed-valence [Cu(II),Cu(I)] binuclear center: a multifrequency electron paramagnetic resonance investigation. FEBS Lett. 1988 Dec 19;242(1):70–74. doi: 10.1016/0014-5793(88)80987-6. [DOI] [PubMed] [Google Scholar]
  20. Kroneck P. M., Riester J., Zumft W. G., Antholine W. E. The copper site in nitrous oxide reductase. Biol Met. 1990;3(2):103–109. doi: 10.1007/BF01179514. [DOI] [PubMed] [Google Scholar]
  21. Moss D., Nabedryk E., Breton J., Mäntele W. Redox-linked conformational changes in proteins detected by a combination of infrared spectroscopy and protein electrochemistry. Evaluation of the technique with cytochrome c. Eur J Biochem. 1990 Feb 14;187(3):565–572. doi: 10.1111/j.1432-1033.1990.tb15338.x. [DOI] [PubMed] [Google Scholar]
  22. Prudêncio M., Pereira A. S., Tavares P., Besson S., Cabrito I., Brown K., Samyn B., Devreese B., Van Beeumen J., Rusnak F. Purification, characterization, and preliminary crystallographic study of copper-containing nitrous oxide reductase from Pseudomonas nautica 617. Biochemistry. 2000 Apr 11;39(14):3899–3907. doi: 10.1021/bi9926328. [DOI] [PubMed] [Google Scholar]
  23. Rasmussen T., Berks B. C., Sanders-Loehr J., Dooley D. M., Zumft W. G., Thomson A. J. The catalytic center in nitrous oxide reductase, CuZ, is a copper-sulfide cluster. Biochemistry. 2000 Oct 24;39(42):12753–12756. doi: 10.1021/bi001811i. [DOI] [PubMed] [Google Scholar]
  24. Riester J., Zumft W. G., Kroneck P. M. Nitrous oxide reductase from Pseudomonas stutzeri. Redox properties and spectroscopic characterization of different forms of the multicopper enzyme. Eur J Biochem. 1989 Jan 2;178(3):751–762. doi: 10.1111/j.1432-1033.1989.tb14506.x. [DOI] [PubMed] [Google Scholar]
  25. Robinson H., Ang M. C., Gao Y. G., Hay M. T., Lu Y., Wang A. H. Structural basis of electron transfer modulation in the purple CuA center. Biochemistry. 1999 May 4;38(18):5677–5683. doi: 10.1021/bi9901634. [DOI] [PubMed] [Google Scholar]
  26. Sato K., Okubo A., Yamazaki S. Anaerobic purification and characterization of nitrous oxide reductase from Rhodobacter sphaeroides f. sp. denitrificans IL106. J Biochem. 1999 May;125(5):864–868. doi: 10.1093/oxfordjournals.jbchem.a022361. [DOI] [PubMed] [Google Scholar]
  27. Slutter C. E., Gromov I., Epel B., Pecht I., Richards J. H., Goldfarb D. Pulsed EPR/ENDOR characterization of perturbations of the Cu(A) center ground state by axial methionine ligand mutations. J Am Chem Soc. 2001 Jun 6;123(22):5325–5336. doi: 10.1021/ja003924v. [DOI] [PubMed] [Google Scholar]
  28. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  29. Snyder S. W., Hollocher T. C. Purification and some characteristics of nitrous oxide reductase from Paracoccus denitrificans. J Biol Chem. 1987 May 15;262(14):6515–6525. [PubMed] [Google Scholar]
  30. SooHoo C. K., Hollocher T. C. Purification and characterization of nitrous oxide reductase from Pseudomonas aeruginosa strain P2. J Biol Chem. 1991 Feb 5;266(4):2203–2209. [PubMed] [Google Scholar]
  31. Suharti, Strampraad M. J., Schröder I., de Vries S. A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry. 2001 Feb 27;40(8):2632–2639. doi: 10.1021/bi0020067. [DOI] [PubMed] [Google Scholar]
  32. Thomson A. J., Cheesman M. R., George S. J. Variable-temperature magnetic circular dichroism. Methods Enzymol. 1993;226:199–232. doi: 10.1016/0076-6879(93)26011-w. [DOI] [PubMed] [Google Scholar]
  33. Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science. 1995 Aug 25;269(5227):1069–1074. doi: 10.1126/science.7652554. [DOI] [PubMed] [Google Scholar]
  34. Zumft W. G. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev. 1997 Dec;61(4):533–616. doi: 10.1128/mmbr.61.4.533-616.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES