Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):825–831. doi: 10.1042/BJ20020161

Identification, cloning and expression of the mouse N-acetylglutamate synthase gene.

Ljubica Caldovic 1, Hiroki Morizono 1, Xiaolin Yu 1, Mark Thompson 1, Dashuang Shi 1, Rene Gallegos 1, Norma M Allewell 1, Michael H Malamy 1, Mendel Tuchman 1
PMCID: PMC1222632  PMID: 12049647

Abstract

In ureotelic animals, N-acetylglutamate (NAG) is an essential allosteric activator of carbamylphosphate synthetase I (CPSI), the first enzyme in the urea cycle. NAG synthase (NAGS; EC 2.3.1.1) catalyses the formation of NAG from glutamate and acetyl-CoA in liver and intestinal mitochondria. This enzyme is supposed to regulate ureagenesis by producing variable amounts of NAG, thus modulating CPSI activity. Moreover, inherited deficiencies in NAGS have been associated with hyperammonaemia, probably due to the loss of CPSI activity. Although the existence of the NAGS protein in mammals has been known for decades, the gene has remained elusive. We identified the mouse (Mus musculus) and human NAGS genes using their similarity to the respective Neurospora crassa gene. NAGS was cloned from a mouse liver cDNA library and was found to encode a 2.3 kb message, highly expressed in liver and small intestine with lower expression levels in kidney, spleen and testis. The deduced amino acid sequence contains a putative mitochondrial targeting signal at the N-terminus. The cDNA sequence complements an argA (NAGS)-deficient Escherichia coli strain, reversing its arginine auxotrophy. His-tagged versions of the pre-protein and two putative mature proteins were each overexpressed in E. coli, and purified to apparent homogeneity by using a nickel-affinity column. The pre-protein and the two putative mature proteins catalysed the NAGS reaction but one of the putative mature enzymes had significantly higher activity than the pre-protein. The addition of l-arginine increased the catalytic activity of the purified recombinant NAGS enzymes by approx. 2-6-fold.

Full Text

The Full Text of this article is available as a PDF (351.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abadjieva A., Pauwels K., Hilven P., Crabeel M. A new yeast metabolon involving at least the two first enzymes of arginine biosynthesis: acetylglutamate synthase activity requires complex formation with acetylglutamate kinase. J Biol Chem. 2001 Sep 11;276(46):42869–42880. doi: 10.1074/jbc.M103732200. [DOI] [PubMed] [Google Scholar]
  2. Bachmann C., Colombo J. P., Jaggi K. N-acetylglutamate synthetase (NAGS) deficiency: diagnosis, clinical observations and treatment. Adv Exp Med Biol. 1982;153:39–45. doi: 10.1007/978-1-4757-6903-6_6. [DOI] [PubMed] [Google Scholar]
  3. Bachmann C., Krähenbühl S., Colombo J. P. Purification and properties of acetyl-CoA:L-glutamate N-acetyltransferase from human liver. Biochem J. 1982 Jul 1;205(1):123–127. doi: 10.1042/bj2050123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banko G., Zollner H. The effect of glucagon on N-acetylglutamate-synthetase. Int J Biochem. 1985;17(6):737–739. doi: 10.1016/0020-711x(85)90376-3. [DOI] [PubMed] [Google Scholar]
  5. Coude F. X., Sweetman L., Nyhan W. L. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979 Dec;64(6):1544–1551. doi: 10.1172/JCI109614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coudé F. X., Rabier D., Cathelineau L., Grimber G., Parvy P., Kamoun P. A mechanism for valproate-induced hyperammonemia. Adv Exp Med Biol. 1982;153:153–161. doi: 10.1007/978-1-4757-6903-6_21. [DOI] [PubMed] [Google Scholar]
  7. Cunin R., Glansdorff N., Piérard A., Stalon V. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cybis J., Davis R. H. Organization and control in the arginine biosynthetic pathway of Neurospora. J Bacteriol. 1975 Jul;123(1):196–202. doi: 10.1128/jb.123.1.196-202.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Felipo V., Miñana M. D., Grisolía S. Long-term ingestion of ammonium increases acetylglutamate and urea levels without affecting the amount of carbamoyl-phosphate synthase. Eur J Biochem. 1988 Oct 1;176(3):567–571. doi: 10.1111/j.1432-1033.1988.tb14315.x. [DOI] [PubMed] [Google Scholar]
  10. GRISOLIA S., COHEN P. P. Catalytic rôle of of glutamate derivatives in citrulline biosynthesis. J Biol Chem. 1953 Oct;204(2):753–757. [PubMed] [Google Scholar]
  11. Gessert S. F., Kim J. H., Nargang F. E., Weiss R. L. A polyprotein precursor of two mitochondrial enzymes in Neurospora crassa. Gene structure and precursor processing. J Biol Chem. 1994 Mar 18;269(11):8189–8203. [PubMed] [Google Scholar]
  12. Grau E., Felipo V., Miñana M. D., Grisolía S. Treatment of hyperammonemia with carbamylglutamate in rats. Hepatology. 1992 Mar;15(3):446–448. doi: 10.1002/hep.1840150315. [DOI] [PubMed] [Google Scholar]
  13. Hayase K., Yonekawa G., Yoshida A. Arginine affects urea synthesis in rats treated with thyroid hormone. J Nutr. 1993 Feb;123(2):253–258. doi: 10.1093/jn/123.2.253. [DOI] [PubMed] [Google Scholar]
  14. Ito A. Mitochondrial processing peptidase: multiple-site recognition of precursor proteins. Biochem Biophys Res Commun. 1999 Nov 30;265(3):611–616. doi: 10.1006/bbrc.1999.1703. [DOI] [PubMed] [Google Scholar]
  15. Jauniaux J. C., Urrestarazu L. A., Wiame J. M. Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol. 1978 Mar;133(3):1096–1107. doi: 10.1128/jb.133.3.1096-1107.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kawamoto S., Ishida H., Mori M., Tatibana M. Regulation of N-acetylglutamate synthetase in mouse liver. Postprandial changes in sensitivity to activation by arginine. Eur J Biochem. 1982 Apr;123(3):637–641. [PubMed] [Google Scholar]
  17. Listrom C. D., Morizono H., Rajagopal B. S., McCann M. T., Tuchman M., Allewell N. M. Expression, purification, and characterization of recombinant human glutamine synthetase. Biochem J. 1997 Nov 15;328(Pt 1):159–163. doi: 10.1042/bj3280159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MARSHALL M., METZENBERG R. L., COHEN P. P. Purification of carbamyl phosphate synthetase from frog liver. J Biol Chem. 1958 Jul;233(1):102–105. [PubMed] [Google Scholar]
  19. Meijer A. J., Lamers W. H., Chamuleau R. A. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 1990 Jul;70(3):701–748. doi: 10.1152/physrev.1990.70.3.701. [DOI] [PubMed] [Google Scholar]
  20. Meijer A. J., Lof C., Ramos I. C., Verhoeven A. J. Control of ureogenesis. Eur J Biochem. 1985 Apr 1;148(1):189–196. doi: 10.1111/j.1432-1033.1985.tb08824.x. [DOI] [PubMed] [Google Scholar]
  21. Neupert W. Protein import into mitochondria. Annu Rev Biochem. 1997;66:863–917. doi: 10.1146/annurev.biochem.66.1.863. [DOI] [PubMed] [Google Scholar]
  22. Rajagopal B. S., DePonte J., 3rd, Tuchman M., Malamy M. H. Use of inducible feedback-resistant N-acetylglutamate synthetase (argA) genes for enhanced arginine biosynthesis by genetically engineered Escherichia coli K-12 strains. Appl Environ Microbiol. 1998 May;64(5):1805–1811. doi: 10.1128/aem.64.5.1805-1811.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shigesada K., Tatibana M. Enzymatic synthesis of acetylglutamate by mammalian liver preparations and its stimulation by arginine. Biochem Biophys Res Commun. 1971 Sep;44(5):1117–1124. doi: 10.1016/s0006-291x(71)80201-2. [DOI] [PubMed] [Google Scholar]
  24. Shigesada K., Tatibana M. N-Acetylglutamate synthetase from rat-liver mitochondria. Partial purification and catalytic properties. Eur J Biochem. 1978 Mar;84(1):285–291. doi: 10.1111/j.1432-1033.1978.tb12167.x. [DOI] [PubMed] [Google Scholar]
  25. Sonoda T., Tatibana M. Purification of N-acetyl-L-glutamate synthetase from rat liver mitochondria and substrate and activator specificity of the enzyme. J Biol Chem. 1983 Aug 25;258(16):9839–9844. [PubMed] [Google Scholar]
  26. Stanley C. A., Lieu Y. K., Hsu B. Y., Burlina A. B., Greenberg C. R., Hopwood N. J., Perlman K., Rich B. H., Zammarchi E., Poncz M. Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med. 1998 May 7;338(19):1352–1357. doi: 10.1056/NEJM199805073381904. [DOI] [PubMed] [Google Scholar]
  27. Tuchman M., Holzknecht R. A. N-acetylglutamate content in liver and gut of normal and fasted mice, normal human livers, and livers of individuals with carbamyl phosphate synthetase or ornithine transcarbamylase deficiency. Pediatr Res. 1990 Apr;27(4 Pt 1):408–412. doi: 10.1203/00006450-199004000-00020. [DOI] [PubMed] [Google Scholar]
  28. Tuchman M., Morizono H., Rajagopal B. S., Plante R. J., Allewell N. M. The biochemical and molecular spectrum of ornithine transcarbamylase deficiency. J Inherit Metab Dis. 1998;21 (Suppl 1):40–58. doi: 10.1023/a:1005353407220. [DOI] [PubMed] [Google Scholar]
  29. Van Dijk M., Lund P. N-Acetylglutamate in rat liver during foetal development. Biochem J. 1984 Sep 15;222(3):837–838. doi: 10.1042/bj2220837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zollner H. Regulation of urea synthesis. The effect of ammonia on the N-acetylglutamate content of isolated rat liver cells. Biochim Biophys Acta. 1981 Aug 17;676(2):170–176. doi: 10.1016/0304-4165(81)90184-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES