Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jun 15;364(Pt 3):849–855. doi: 10.1042/BJ20011643

Hydrolysable ATP is a requirement for the correct interaction of molecular chaperonins cpn60 and cpn10.

Chris Walters 1, Neil Errington 1, Arther J Rowe 1, Stephen E Harding 1
PMCID: PMC1222635  PMID: 12049650

Abstract

Over recent years the binding ability of the molecular chaperone cpn60 (GroEL14) and its co-chaperone cpn10 (GroES7) has been reported to occur under an assortment of specific conditions from the use of non-hydrolysable ATP analogues (namely adenosine 5'-[gamma-thio]triphosphate) to requiring hydrolysable ATP for any interaction to occur. We have investigated this further using the molecular hydrodynamic methods (hydrodynamic bead modelling, sedimentation-velocity analytical ultracentrifugation and dynamic light-scattering), allowing the process to be followed under physiologically relevant dilute solution conditions, combined with absorption spectrophotometry to determine GroES7-GroEL14 interaction through the rate inhibition of the cpn60's ATPase activity by GroES7. The results found here indicate that the presence of hydrolysable ATP is required to facilitate correct GroES7 interaction with GroEL14 in solution.

Full Text

The Full Text of this article is available as a PDF (181.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azem A., Diamant S., Kessel M., Weiss C., Goloubinoff P. The protein-folding activity of chaperonins correlates with the symmetric GroEL14(GroES7)2 heterooligomer. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12021–12025. doi: 10.1073/pnas.92.26.12021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behlke J., Ristau O., Schönfeld H. J. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions. Biochemistry. 1997 Apr 29;36(17):5149–5156. doi: 10.1021/bi962755h. [DOI] [PubMed] [Google Scholar]
  3. Boisvert D. C., Wang J., Otwinowski Z., Horwich A. L., Sigler P. B. The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Struct Biol. 1996 Feb;3(2):170–177. doi: 10.1038/nsb0296-170. [DOI] [PubMed] [Google Scholar]
  4. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
  5. Chandrasekhar G. N., Tilly K., Woolford C., Hendrix R., Georgopoulos C. Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem. 1986 Sep 15;261(26):12414–12419. [PubMed] [Google Scholar]
  6. Chen S., Roseman A. M., Hunter A. S., Wood S. P., Burston S. G., Ranson N. A., Clarke A. R., Saibil H. R. Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy. Nature. 1994 Sep 15;371(6494):261–264. doi: 10.1038/371261a0. [DOI] [PubMed] [Google Scholar]
  7. Emes C. H., Rowe A. J. Frictional properties and molecular weight of native and synthetic myosin filaments from vertebrate skeletal muscle. Biochim Biophys Acta. 1978 Nov 20;537(1):125–144. doi: 10.1016/0005-2795(78)90608-6. [DOI] [PubMed] [Google Scholar]
  8. García de la Torre J., Carrasco B., Harding S. E. SOLPRO: theory and computer program for the prediction of SOLution PROperties of rigid macromolecules and bioparticles. Eur Biophys J. 1997;25(5-6):361–372. doi: 10.1007/s002490050049. [DOI] [PubMed] [Google Scholar]
  9. Gething M. J., Sambrook J. Protein folding in the cell. Nature. 1992 Jan 2;355(6355):33–45. doi: 10.1038/355033a0. [DOI] [PubMed] [Google Scholar]
  10. Gibbons D. L., Hixson J. D., Hay N., Lund P., Gorovits B. M., Ybarra J., Horowitz P. M. Intrinsic fluorescence studies of the chaperonin GroEL containing single Tyr --> Trp replacements reveal ligand-induced conformational changes. J Biol Chem. 1996 Dec 13;271(50):31989–31995. doi: 10.1074/jbc.271.50.31989. [DOI] [PubMed] [Google Scholar]
  11. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  12. Lissin N. M. In vitro dissociation of self-assembly of three chaperonin 60s: the role of ATP. FEBS Lett. 1995 Mar 13;361(1):55–60. doi: 10.1016/0014-5793(95)00151-x. [DOI] [PubMed] [Google Scholar]
  13. Llorca O., Carrascosa J. L., Valpuesta J. M. Biochemical characterization of symmetric GroEL-GroES complexes. Evidence for a role in protein folding. J Biol Chem. 1996 Jan 5;271(1):68–76. doi: 10.1074/jbc.271.1.68. [DOI] [PubMed] [Google Scholar]
  14. Llorca O., Marco S., Carrascosa J. L., Valpuesta J. M. The formation of symmetrical GroEL-GroES complexes in the presence of ATP. FEBS Lett. 1994 May 30;345(2-3):181–186. doi: 10.1016/0014-5793(94)00432-3. [DOI] [PubMed] [Google Scholar]
  15. Llorca O., Pérez-Pérez J., Carrascosa J. L., Galán A., Muga A., Valpuesta J. M. Effects of the inter-ring communication in GroEL structural and functional asymmetry. J Biol Chem. 1997 Dec 26;272(52):32925–32932. doi: 10.1074/jbc.272.52.32925. [DOI] [PubMed] [Google Scholar]
  16. Llorca O., Smyth M. G., Marco S., Carrascosa J. L., Willison K. R., Valpuesta J. M. ATP binding induces large conformational changes in the apical and equatorial domains of the eukaryotic chaperonin containing TCP-1 complex. J Biol Chem. 1998 Apr 24;273(17):10091–10094. doi: 10.1074/jbc.273.17.10091. [DOI] [PubMed] [Google Scholar]
  17. Philo J. S. A method for directly fitting the time derivative of sedimentation velocity data and an alternative algorithm for calculating sedimentation coefficient distribution functions. Anal Biochem. 2000 Mar 15;279(2):151–163. doi: 10.1006/abio.2000.4480. [DOI] [PubMed] [Google Scholar]
  18. Saibil H. R., Zheng D., Roseman A. M., Hunter A. S., Watson G. M., Chen S., Auf Der Mauer A., O'Hara B. P., Wood S. P., Mann N. H. ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr Biol. 1993 May 1;3(5):265–273. doi: 10.1016/0960-9822(93)90176-o. [DOI] [PubMed] [Google Scholar]
  19. Stafford W. F., 3rd Boundary analysis in sedimentation transport experiments: a procedure for obtaining sedimentation coefficient distributions using the time derivative of the concentration profile. Anal Biochem. 1992 Jun;203(2):295–301. doi: 10.1016/0003-2697(92)90316-y. [DOI] [PubMed] [Google Scholar]
  20. Viitanen P. V., Gatenby A. A., Lorimer G. H. Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci. 1992 Mar;1(3):363–369. doi: 10.1002/pro.5560010308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Viitanen P. V., Lubben T. H., Reed J., Goloubinoff P., O'Keefe D. P., Lorimer G. H. Chaperonin-facilitated refolding of ribulosebisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are K+ dependent. Biochemistry. 1990 Jun 19;29(24):5665–5671. doi: 10.1021/bi00476a003. [DOI] [PubMed] [Google Scholar]
  22. Xu Z., Horwich A. L., Sigler P. B. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 1997 Aug 21;388(6644):741–750. doi: 10.1038/41944. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES