Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 1;365(Pt 1):205–211. doi: 10.1042/BJ20020194

XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes.

Nien-Tai Hu 1, Wei-Ming Leu 1, Meng-Shiunn Lee 1, Avon Chen 1, Shu-Chung Chen 1, Yu-Ling Song 1, Ling-Yun Chen 1
PMCID: PMC1222646  PMID: 11931643

Abstract

GspG, -H, -I, -J and -K proteins are members of the pseudopilin family. They are the components required for the type II secretion pathway, which translocates proteins across the outer membrane of Gram-negative bacteria to the extracellular milieu. They were predicted to form a pilus-like structure, and this has been shown for PulG of Klebsiella oxytoca by using electron microscopy. In the present study, we performed biochemical analyses of the XpsG protein of Xanthomonas campestris pv. campestris and observed that it is a pillar-like structure spanning the cytoplasmic and outer membranes. Subcellular fractionation revealed a soluble form (SF) of XpsG, in addition to the membrane form. Chromatographic analysis of SF XpsG in the absence of a detergent indicated that it is part of a large complex (>440 kDa). In vitro studies indicated that XpsG is prone to aggregate in the absence of a detergent. We isolated and characterized a non-functional mutant defective in forming the large complex. It did not interfere with the function of wild-type XpsG and was not detectable in the SF. Moreover, unlike wild-type XpsG, which was distributed in both the cytoplasmic and outer membranes, it appeared only in the cytoplasmic membrane. When wild-type XpsG was co-expressed with His6-tagged XpsH but not with untagged XpsH, SF XpsG bound to nickel and co-eluted with XpsH. This result suggests the presence of other pseudopilin components in the XpsG-containing large-sized molecules.

Full Text

The Full Text of this article is available as a PDF (272.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen L. Y., Chen D. Y., Miaw J., Hu N. T. XpsD, an outer membrane protein required for protein secretion by Xanthomonas campestris pv. campestris, forms a multimer. J Biol Chem. 1996 Feb 2;271(5):2703–2708. doi: 10.1074/jbc.271.5.2703. [DOI] [PubMed] [Google Scholar]
  2. Filloux A., Michel G., Bally M. GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev. 1998 Sep;22(3):177–198. doi: 10.1111/j.1574-6976.1998.tb00366.x. [DOI] [PubMed] [Google Scholar]
  3. Hobbs M., Mattick J. S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol. 1993 Oct;10(2):233–243. doi: 10.1111/j.1365-2958.1993.tb01949.x. [DOI] [PubMed] [Google Scholar]
  4. Hu N. T., Hung M. N., Chiou S. J., Tang F., Chiang D. C., Huang H. Y., Wu C. Y. Cloning and characterization of a gene required for the secretion of extracellular enzymes across the outer membrane by Xanthomonas campestris pv. campestris. J Bacteriol. 1992 Apr;174(8):2679–2687. doi: 10.1128/jb.174.8.2679-2687.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kamoun S., Tola E., Kamdar H., Kado C. I. Rapid generation of directed and unmarked deletions in Xanthomonas. Mol Microbiol. 1992 Mar;6(6):809–816. doi: 10.1111/j.1365-2958.1992.tb01531.x. [DOI] [PubMed] [Google Scholar]
  6. Keizer D. W., Slupsky C. M., Kalisiak M., Campbell A. P., Crump M. P., Sastry P. A., Hazes B., Irvin R. T., Sykes B. D. Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili. J Biol Chem. 2001 Apr 9;276(26):24186–24193. doi: 10.1074/jbc.M100659200. [DOI] [PubMed] [Google Scholar]
  7. Lee H. M., Wang K. C., Liu Y. L., Yew H. Y., Chen L. Y., Leu W. M., Chen D. C., Hu N. T. Association of the cytoplasmic membrane protein XpsN with the outer membrane protein XpsD in the type II protein secretion apparatus of Xanthomonas campestris pv. campestris. J Bacteriol. 2000 Mar;182(6):1549–1557. doi: 10.1128/jb.182.6.1549-1557.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lu H. M., Motley S. T., Lory S. Interactions of the components of the general secretion pathway: role of Pseudomonas aeruginosa type IV pilin subunits in complex formation and extracellular protein secretion. Mol Microbiol. 1997 Jul;25(2):247–259. doi: 10.1046/j.1365-2958.1997.4561818.x. [DOI] [PubMed] [Google Scholar]
  9. Martínez A., Ostrovsky P., Nunn D. N. Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion. Mol Microbiol. 1998 Jun;28(6):1235–1246. doi: 10.1046/j.1365-2958.1998.00888.x. [DOI] [PubMed] [Google Scholar]
  10. Nunn D. N., Lory S. Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):47–51. doi: 10.1073/pnas.89.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nunn D. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol. 1999 Oct;9(10):402–408. doi: 10.1016/s0962-8924(99)01634-7. [DOI] [PubMed] [Google Scholar]
  12. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature. 1995 Nov 2;378(6552):32–38. doi: 10.1038/378032a0. [DOI] [PubMed] [Google Scholar]
  13. Pugsley A. P., Dupuy B. An enzyme with type IV prepilin peptidase activity is required to process components of the general extracellular protein secretion pathway of Klebsiella oxytoca. Mol Microbiol. 1992 Mar;6(6):751–760. doi: 10.1111/j.1365-2958.1992.tb01525.x. [DOI] [PubMed] [Google Scholar]
  14. Pugsley A. P. Multimers of the precursor of a type IV pilin-like component of the general secretory pathway are unrelated to pili. Mol Microbiol. 1996 Jun;20(6):1235–1245. doi: 10.1111/j.1365-2958.1996.tb02643.x. [DOI] [PubMed] [Google Scholar]
  15. Pugsley A. P., Possot O. The general secretory pathway of Klebsiella oxytoca: no evidence for relocalization or assembly of pilin-like PulG protein into a multiprotein complex. Mol Microbiol. 1993 Nov;10(3):665–674. doi: 10.1111/j.1365-2958.1993.tb00938.x. [DOI] [PubMed] [Google Scholar]
  16. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Russel M. Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol. 1998 Jun 12;279(3):485–499. doi: 10.1006/jmbi.1998.1791. [DOI] [PubMed] [Google Scholar]
  18. Sakai Daisuke, Komano Teruya. Genes required for plasmid R64 thin-pilus biogenesis: identification and localization of products of the pilK, pilM, pilO, pilP, pilR, and pilT genes. J Bacteriol. 2002 Jan;184(2):444–451. doi: 10.1128/JB.184.2.444-451.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sauvonnet N., Gounon P., Pugsley A. P. PpdD type IV pilin of Escherichia coli K-12 can Be assembled into pili in Pseudomonas aeruginosa. J Bacteriol. 2000 Feb;182(3):848–854. doi: 10.1128/jb.182.3.848-854.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sauvonnet N., Vignon G., Pugsley A. P., Gounon P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J. 2000 May 15;19(10):2221–2228. doi: 10.1093/emboj/19.10.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strom M. S., Nunn D., Lory S. Multiple roles of the pilus biogenesis protein pilD: involvement of pilD in excretion of enzymes from Pseudomonas aeruginosa. J Bacteriol. 1991 Feb;173(3):1175–1180. doi: 10.1128/jb.173.3.1175-1180.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES