Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 1;365(Pt 1):239–247. doi: 10.1042/BJ20011786

Perturbation of free oligosaccharide trafficking in endoplasmic reticulum glucosidase I-deficient and castanospermine-treated cells.

Christelle Durrant 1, Stuart E H Moore 1
PMCID: PMC1222649  PMID: 11942856

Abstract

Free oligosaccharides (FOS) are generated both in the endoplasmic reticulum (ER) and in the cytosol during glycoprotein biosynthesis. ER lumenal FOS possessing the di-N-acetylchitobiose moiety at their reducing termini (FOSGN2) are exported into the cytosol where they, along with their cytosolically generated counterparts possessing a single N-acetylglucosamine residue at their reducing termini (FOSGN1), are trimmed in order to be imported into lysosomes for final degradation. Both the ER and lysosomal FOS transport processes are unable to translocate triglucosylated FOS across membranes. In the present study, we have examined FOS trafficking in HepG2 cells treated with the glucosidase inhibitor castanospermine. We have shown that triglucosylated FOSGN2 generated in the ER are transported to the Golgi apparatus where they are deglucosylated by endomannosidase and acquire complex, sialic acid-containing structures before being secreted into the extracellular space by a Brefeldin A-sensitive pathway. FOSGN2 are also secreted from glucosidase I-deficient Lec23 cells and from the castanospermine-treated parental Chinese-hamster ovary cell line. Despite the secretion of FOSGN2 from Lec23 cells, we noted a transient intracellular accumulation (60 nmol/g cells) of triglucosylated FOSGN1 in these cells. Finally, in glucosidase I-compromised cells, FOS trafficking was severely perturbed leading to both the secretion of FOSGN2 into the extracellular space and a growth-dependent pile up of triglucosylated FOSGN1 in the cytosol. The possibility that these abnormalities contributed to the severe and rapidly progressive pathology in a patient with congenital disorders of glycosylation type IIb (glucosidase I deficiency) is discussed.

Full Text

The Full Text of this article is available as a PDF (262.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali B. R., Field M. C. Glycopeptide export from mammalian microsomes is independent of calcium and is distinct from oligosaccharide export. Glycobiology. 2000 Apr;10(4):383–391. doi: 10.1093/glycob/10.4.383. [DOI] [PubMed] [Google Scholar]
  2. Anumula K. R., Spiro R. G. Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. Studies with thyroid microsomal enzymes and slices. J Biol Chem. 1983 Dec 25;258(24):15274–15282. [PubMed] [Google Scholar]
  3. Appenzeller C., Andersson H., Kappeler F., Hauri H. P. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nat Cell Biol. 1999 Oct;1(6):330–334. doi: 10.1038/14020. [DOI] [PubMed] [Google Scholar]
  4. Aronson N. N., Jr, Backes M., Kuranda M. J. Rat liver chitobiase: purification, properties, and role in the lysosomal degradation of Asn-linked glycoproteins. Arch Biochem Biophys. 1989 Aug 1;272(2):290–300. doi: 10.1016/0003-9861(89)90222-1. [DOI] [PubMed] [Google Scholar]
  5. Burda P., Aebi M. The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta. 1999 Jan 6;1426(2):239–257. doi: 10.1016/s0304-4165(98)00127-5. [DOI] [PubMed] [Google Scholar]
  6. Cacan R., Dengremont C., Labiau O., Kmiécik D., Mir A. M., Verbert A. Occurrence of a cytosolic neutral chitobiase activity involved in oligomannoside degradation: a study with Madin-Darby bovine kidney (MDBK) cells. Biochem J. 1996 Jan 15;313(Pt 2):597–602. doi: 10.1042/bj3130597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cacan R., Duvet S., Labiau O., Verbert A., Krag S. S. Monoglucosylated oligomannosides are released during the degradation process of newly synthesized glycoproteins. J Biol Chem. 2001 Apr 6;276(25):22307–22312. doi: 10.1074/jbc.M101077200. [DOI] [PubMed] [Google Scholar]
  8. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 1997 May;7(5):193–200. doi: 10.1016/S0962-8924(97)01032-5. [DOI] [PubMed] [Google Scholar]
  9. Daniel P. F., Evans J. E., De Gasperi R., Winchester B., Warren C. D. A human lysosomal alpha(1----6)-mannosidase active on the branched trimannosyl core of complex glycans. Glycobiology. 1992 Aug;2(4):327–336. doi: 10.1093/glycob/2.4.327. [DOI] [PubMed] [Google Scholar]
  10. De Praeter CM, Gerwig G. J., Bause E., Nuytinck L. K., Vliegenthart J. F., Breuer W., Kamerling J. P., Espeel M. F., Martin J. J., De Paepe AM A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am J Hum Genet. 2000 Apr 28;66(6):1744–1756. doi: 10.1086/302948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duvet S., Labiau O., Mir A. M., Kmiécik D., Krag S. S., Verbert A., Cacan R. Cytosolic deglycosylation process of newly synthesized glycoproteins generates oligomannosides possessing one GlcNAc residue at the reducing end. Biochem J. 1998 Oct 15;335(Pt 2):389–396. doi: 10.1042/bj3350389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hase S., Ibuki T., Ikenaka T. Reexamination of the pyridylamination used for fluorescence labeling of oligosaccharides and its application to glycoproteins. J Biochem. 1984 Jan;95(1):197–203. doi: 10.1093/oxfordjournals.jbchem.a134585. [DOI] [PubMed] [Google Scholar]
  13. Hirschberg C. B., Snider M. D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  14. Klausner R. D., Donaldson J. G., Lippincott-Schwartz J. Brefeldin A: insights into the control of membrane traffic and organelle structure. J Cell Biol. 1992 Mar;116(5):1071–1080. doi: 10.1083/jcb.116.5.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  16. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liscum L., Munn N. J. Intracellular cholesterol transport. Biochim Biophys Acta. 1999 Apr 19;1438(1):19–37. doi: 10.1016/s1388-1981(99)00043-8. [DOI] [PubMed] [Google Scholar]
  18. Moore S. E., Bauvy C., Codogno P. Endoplasmic reticulum-to-cytosol transport of free polymannose oligosaccharides in permeabilized HepG2 cells. EMBO J. 1995 Dec 1;14(23):6034–6042. doi: 10.1002/j.1460-2075.1995.tb00292.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moore S. E. Oligosaccharide transport: pumping waste from the ER into lysosomes. Trends Cell Biol. 1999 Nov;9(11):441–446. doi: 10.1016/s0962-8924(99)01648-7. [DOI] [PubMed] [Google Scholar]
  20. Moore S. E., Spiro R. G. Demonstration that Golgi endo-alpha-D-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins. J Biol Chem. 1990 Aug 5;265(22):13104–13112. [PubMed] [Google Scholar]
  21. Moore S. E., Spiro R. G. Inhibition of glucose trimming by castanospermine results in rapid degradation of unassembled major histocompatibility complex class I molecules. J Biol Chem. 1993 Feb 25;268(6):3809–3812. [PubMed] [Google Scholar]
  22. Moore S. E., Spiro R. G. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J Biol Chem. 1994 Apr 29;269(17):12715–12721. [PubMed] [Google Scholar]
  23. Moore S. E. Transport of free polymannose-type oligosaccharides from the endoplasmic reticulum into the cytosol is inhibited by mannosides and requires a thapsigargin-sensitive calcium store. Glycobiology. 1998 Apr;8(4):373–381. doi: 10.1093/glycob/8.4.373. [DOI] [PubMed] [Google Scholar]
  24. Ogier-Denis E., Bauvy C., Cluzeaud F., Vandewalle A., Codogno P. Glucose persistence on high-mannose oligosaccharides selectively inhibits the macroautophagic sequestration of N-linked glycoproteins. Biochem J. 2000 Feb 1;345(Pt 3):459–466. [PMC free article] [PubMed] [Google Scholar]
  25. Ohashi S., Iwai K., Mega T., Hase S. Quantitation and isomeric structure analysis of free oligosaccharides present in the cytosol fraction of mouse liver: detection of a free disialobiantennary oligosaccharide and glucosylated oligomannosides. J Biochem. 1999 Nov;126(5):852–858. doi: 10.1093/oxfordjournals.jbchem.a022526. [DOI] [PubMed] [Google Scholar]
  26. Parodi A. J. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000;69:69–93. doi: 10.1146/annurev.biochem.69.1.69. [DOI] [PubMed] [Google Scholar]
  27. Pierce R. J., Spik G., Montreuil J. Demonstration and cytosolic location of an endo-N-acetyl-beta-D-glucosaminidase activity towards an asialo-N-acetyl-lactosaminic-type substrate in rat liver. Biochem J. 1980 Jan 1;185(1):261–264. doi: 10.1042/bj1850261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ploegh H. L. Destruction of proteins as a creative force. Immunol Today. 1997 Jun;18(6):269–271. doi: 10.1016/s0167-5699(97)80021-7. [DOI] [PubMed] [Google Scholar]
  29. Rabouille C., Spiro R. G. Nonselective utilization of the endomannosidase pathway for processing glycoproteins by human hepatoma (HepG2) cells. J Biol Chem. 1992 Jun 5;267(16):11573–11578. [PubMed] [Google Scholar]
  30. Ray M. K., Yang J., Sundaram S., Stanley P. A novel glycosylation phenotype expressed by Lec23, a Chinese hamster ovary mutant deficient in alpha-glucosidase I. J Biol Chem. 1991 Dec 5;266(34):22818–22825. [PubMed] [Google Scholar]
  31. Roche A. C., Monsigny M. MR60/ERGIC-53, a mannose-specific shuttling intracellular membrane lectin. Results Probl Cell Differ. 2001;33:19–38. doi: 10.1007/978-3-540-46410-5_2. [DOI] [PubMed] [Google Scholar]
  32. Saint-Pol A., Bauvy C., Codogno P., Moore S. E. Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells. J Cell Biol. 1997 Jan 13;136(1):45–59. doi: 10.1083/jcb.136.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saint-Pol A., Codogno P., Moore S. E. Cytosol-to-lysosome transport of free polymannose-type oligosaccharides. Kinetic and specificity studies using rat liver lysosomes. J Biol Chem. 1999 May 7;274(19):13547–13555. doi: 10.1074/jbc.274.19.13547. [DOI] [PubMed] [Google Scholar]
  34. Spiro M. J., Spiro R. G. Control of N-linked carbohydrate unit synthesis in thyroid endoplasmic reticulum by membrane organization and dolichyl phosphate availability. J Biol Chem. 1986 Nov 5;261(31):14725–14732. [PubMed] [Google Scholar]
  35. Spiro M. J., Spiro R. G. Potential regulation of N-glycosylation precursor through oligosaccharide-lipid hydrolase action and glucosyltransferase-glucosidase shuttle. J Biol Chem. 1991 Mar 15;266(8):5311–5317. [PubMed] [Google Scholar]
  36. Spiro M. J., Spiro R. G. Release of polymannose oligosaccharides from vesicular stomatitis virus G protein during endoplasmic reticulum-associated degradation. Glycobiology. 2001 Oct;11(10):803–811. doi: 10.1093/glycob/11.10.803. [DOI] [PubMed] [Google Scholar]
  37. Spiro R. G. Glucose residues as key determinants in the biosynthesis and quality control of glycoproteins with N-linked oligosaccharides. J Biol Chem. 2000 Nov 17;275(46):35657–35660. doi: 10.1074/jbc.R000022200. [DOI] [PubMed] [Google Scholar]
  38. Suzuki T., Lennarz W. J. In yeast the export of small glycopeptides from the endoplasmic reticulum into the cytosol is not affected by the structure of their oligosaccharide chains. Glycobiology. 2000 Jan;10(1):51–58. doi: 10.1093/glycob/10.1.51. [DOI] [PubMed] [Google Scholar]
  39. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993 Apr;3(2):97–130. doi: 10.1093/glycob/3.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Varki A., Kornfeld S. The spectrum of anionic oligosaccharides released by endo-beta-N-acetylglucosaminidase H from glycoproteins. Structural studies and interactions with the phosphomannosyl receptor. J Biol Chem. 1983 Mar 10;258(5):2808–2818. [PubMed] [Google Scholar]
  41. Vassilakos A., Michalak M., Lehrman M. A., Williams D. B. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Biochemistry. 1998 Mar 10;37(10):3480–3490. doi: 10.1021/bi972465g. [DOI] [PubMed] [Google Scholar]
  42. Wieland F. T., Gleason M. L., Serafini T. A., Rothman J. E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell. 1987 Jul 17;50(2):289–300. doi: 10.1016/0092-8674(87)90224-8. [DOI] [PubMed] [Google Scholar]
  43. Wiertz E. J., Tortorella D., Bogyo M., Yu J., Mothes W., Jones T. R., Rapoport T. A., Ploegh H. L. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 1996 Dec 5;384(6608):432–438. doi: 10.1038/384432a0. [DOI] [PubMed] [Google Scholar]
  44. Yamashita K., Hara-Kuge S., Ohkura T. Intracellular lectins associated with N-linked glycoprotein traffic. Biochim Biophys Acta. 1999 Dec 6;1473(1):147–160. doi: 10.1016/s0304-4165(99)00175-0. [DOI] [PubMed] [Google Scholar]
  45. Youakim A., Herscovics A. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas. Cancer Res. 1985 Nov;45(11 Pt 1):5505–5511. [PubMed] [Google Scholar]
  46. van Leyen K., Wieland F. Complete Golgi passage of glycotripeptides generated in the endoplasmic reticulum of mammalian cells. FEBS Lett. 1994 Sep 26;352(2):211–215. doi: 10.1016/0014-5793(94)00959-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES