Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 1;365(Pt 1):133–145. doi: 10.1042/BJ20020072

UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53.

Nadine Chouinard 1, Kristoffer Valerie 1, Mahmoud Rouabhia 1, Jacques Huot 1
PMCID: PMC1222664  PMID: 12071847

Abstract

Human keratinocytes respond to UV rays by developing a fast adaptive response that contributes to maintaining their functions and survival. We investigated the role of the mitogen-activated protein kinase pathways in transducing the UV signals in normal human keratinocytes. We found that UVA, UVB or UVC induced a marked and persistent activation of p38, whereas c-Jun N-terminal kinase or extracellular signal-regulated kinase were less or not activated respectively. Inhibition of p38 activity by expression of a dominant-negative mutant of p38 or with SB203580 impaired cell viability and led to an increase in UVB-induced apoptosis. This sensitization to apoptosis was independent of caspase activities. Inhibition of p38 did not sensitize transformed HaCaT keratinocytes to UVB-induced apoptosis. In normal keratinocytes, expression of a dominant-negative mutant of p53 increased UVB-induced cell death, pointing to a role for p53. In these cells, UVB triggered a p38-dependent phosphorylation of p53 on Ser-15. This phosphorylation was associated with an SB203580-sensitive accumulation of p53, even in the presence of a serine phosphatase inhibitor. Accumulated p53 was localized mainly in the cytoplasm, independently of CRM1 nuclear export. In HaCaT cells, p53 was localized exclusively in the nucleus and its distribution and level were not affected by UVB or p38 inhibition. However, UVB induced an SB203580-insensitive phosphorylation on Ser-15 of mutated p53. Overall, our results suggest that, in normal human keratinocytes, protection against UVB depends on p38-mediated phosphorylation and stabilization of p53 and is tightly associated with the cytoplasmic sequestration of wild-type p53. We conclude that the p38/p53 pathway plays a key role in the adaptive response of normal human keratinocytes against UV stress.

Full Text

The Full Text of this article is available as a PDF (422.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler V., Pincus M. R., Minamoto T., Fuchs S. Y., Bluth M. J., Brandt-Rauf P. W., Friedman F. K., Robinson R. C., Chen J. M., Wang X. W. Conformation-dependent phosphorylation of p53. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1686–1691. doi: 10.1073/pnas.94.5.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appella E., Anderson C. W. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem. 2001 May;268(10):2764–2772. doi: 10.1046/j.1432-1327.2001.02225.x. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft M., Taya Y., Vousden K. H. Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol. 2000 May;20(9):3224–3233. doi: 10.1128/mcb.20.9.3224-3233.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bean L. J., Stark G. R. Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene. 2001 Mar 1;20(9):1076–1084. doi: 10.1038/sj.onc.1204204. [DOI] [PubMed] [Google Scholar]
  5. Bulavin D. V., Saito S., Hollander M. C., Sakaguchi K., Anderson C. W., Appella E., Fornace A. J., Jr Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 1999 Dec 1;18(23):6845–6854. doi: 10.1093/emboj/18.23.6845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chehab N. H., Malikzay A., Stavridi E. S., Halazonetis T. D. Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13777–13782. doi: 10.1073/pnas.96.24.13777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chouinard N., Therrien J. P., Mitchell D. L., Robert M., Drouin R., Rouabhia M. Repeated exposures of human skin equivalent to low doses of ultraviolet-B radiation lead to changes in cellular functions and accumulation of cyclobutane pyrimidine dimers. Biochem Cell Biol. 2001;79(4):507–515. [PubMed] [Google Scholar]
  8. Deschesnes R. G., Huot J., Valerie K., Landry J. Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Mol Biol Cell. 2001 Jun;12(6):1569–1582. doi: 10.1091/mbc.12.6.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dhanwada K. R., Dickens M., Neades R., Davis R., Pelling J. C. Differential effects of UV-B and UV-C components of solar radiation on MAP kinase signal transduction pathways in epidermal keratinocytes. Oncogene. 1995 Nov 16;11(10):1947–1953. [PubMed] [Google Scholar]
  10. Enari M., Talanian R. V., Wong W. W., Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature. 1996 Apr 25;380(6576):723–726. doi: 10.1038/380723a0. [DOI] [PubMed] [Google Scholar]
  11. Guay J., Lambert H., Gingras-Breton G., Lavoie J. N., Huot J., Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci. 1997 Feb;110(Pt 3):357–368. doi: 10.1242/jcs.110.3.357. [DOI] [PubMed] [Google Scholar]
  12. Hao M., Lowy A. M., Kapoor M., Deffie A., Liu G., Lozano G. Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem. 1996 Nov 15;271(46):29380–29385. doi: 10.1074/jbc.271.46.29380. [DOI] [PubMed] [Google Scholar]
  13. Haupt Y., Maya R., Kazaz A., Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997 May 15;387(6630):296–299. doi: 10.1038/387296a0. [DOI] [PubMed] [Google Scholar]
  14. Hecker D., Page G., Lohrum M., Weiland S., Scheidtmann K. H. Complex regulation of the DNA-binding activity of p53 by phosphorylation: differential effects of individual phosphorylation sites on the interaction with different binding motifs. Oncogene. 1996 Mar 7;12(5):953–961. [PubMed] [Google Scholar]
  15. Huot J., Houle F., Marceau F., Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res. 1997 Mar;80(3):383–392. doi: 10.1161/01.res.80.3.383. [DOI] [PubMed] [Google Scholar]
  16. Huot J., Houle F., Rousseau S., Deschesnes R. G., Shah G. M., Landry J. SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol. 1998 Nov 30;143(5):1361–1373. doi: 10.1083/jcb.143.5.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huot J., Lambert H., Lavoie J. N., Guimond A., Houle F., Landry J. Characterization of 45-kDa/54-kDa HSP27 kinase, a stress-sensitive kinase which may activate the phosphorylation-dependent protective function of mammalian 27-kDa heat-shock protein HSP27. Eur J Biochem. 1995 Jan 15;227(1-2):416–427. doi: 10.1111/j.1432-1033.1995.tb20404.x. [DOI] [PubMed] [Google Scholar]
  18. Ivanov V. N., Ronai Z. p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-kappaB activity and Fas expression. Oncogene. 2000 Jun 15;19(26):3003–3012. doi: 10.1038/sj.onc.1203602. [DOI] [PubMed] [Google Scholar]
  19. Juo P., Kuo C. J., Reynolds S. E., Konz R. F., Raingeaud J., Davis R. J., Biemann H. P., Blenis J. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol Cell Biol. 1997 Jan;17(1):24–35. doi: 10.1128/mcb.17.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kar Sanchari, Sakaguchi Kazuyasu, Shimohigashi Yasuyuki, Samaddar Soma, Banerjee Raja, Basu Gautam, Swaminathan V., Kundu Tapas K., Roy Siddhartha. Effect of phosphorylation on the structure and fold of transactivation domain of p53. J Biol Chem. 2002 Feb 19;277(18):15579–15585. doi: 10.1074/jbc.M106915200. [DOI] [PubMed] [Google Scholar]
  21. Kawasaki H., Morooka T., Shimohama S., Kimura J., Hirano T., Gotoh Y., Nishida E. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem. 1997 Jul 25;272(30):18518–18521. doi: 10.1074/jbc.272.30.18518. [DOI] [PubMed] [Google Scholar]
  22. Kubbutat M. H., Jones S. N., Vousden K. H. Regulation of p53 stability by Mdm2. Nature. 1997 May 15;387(6630):299–303. doi: 10.1038/387299a0. [DOI] [PubMed] [Google Scholar]
  23. Kulms D., Schwarz T. Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed. 2000 Oct;16(5):195–201. doi: 10.1034/j.1600-0781.2000.160501.x. [DOI] [PubMed] [Google Scholar]
  24. Kummer J. L., Rao P. K., Heidenreich K. A. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem. 1997 Aug 15;272(33):20490–20494. doi: 10.1074/jbc.272.33.20490. [DOI] [PubMed] [Google Scholar]
  25. Kyriakis J. M., Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001 Apr;81(2):807–869. doi: 10.1152/physrev.2001.81.2.807. [DOI] [PubMed] [Google Scholar]
  26. Kyriakis J. M., Banerjee P., Nikolakaki E., Dai T., Rubie E. A., Ahmad M. F., Avruch J., Woodgett J. R. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. doi: 10.1038/369156a0. [DOI] [PubMed] [Google Scholar]
  27. Lehman T. A., Modali R., Boukamp P., Stanek J., Bennett W. P., Welsh J. A., Metcalf R. A., Stampfer M. R., Fusenig N., Rogan E. M. p53 mutations in human immortalized epithelial cell lines. Carcinogenesis. 1993 May;14(5):833–839. doi: 10.1093/carcin/14.5.833. [DOI] [PubMed] [Google Scholar]
  28. Maltzman W., Czyzyk L. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol. 1984 Sep;4(9):1689–1694. doi: 10.1128/mcb.4.9.1689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McKay B. C., Chen F., Perumalswami C. R., Zhang F., Ljungman M. The tumor suppressor p53 can both stimulate and inhibit ultraviolet light-induced apoptosis. Mol Biol Cell. 2000 Aug;11(8):2543–2551. doi: 10.1091/mbc.11.8.2543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Moll U. M., Riou G., Levine A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7262–7266. doi: 10.1073/pnas.89.15.7262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ottaggio L., Bozzo S., Moro F., Sparks A., Campomenosi P., Miele M., Bonatti S., Fronza G., Lane D. P., Abbondandolo A. Defective nuclear localization of p53 protein in a Chinese hamster cell line is associated with the formation of stable cytoplasmic protein multimers in cells with gene amplification. Carcinogenesis. 2000 Sep;21(9):1631–1638. doi: 10.1093/carcin/21.9.1631. [DOI] [PubMed] [Google Scholar]
  32. Pathak M. A. Ultraviolet radiation and the development of non-melanoma and melanoma skin cancer: clinical and experimental evidence. Skin Pharmacol. 1991;4 (Suppl 1):85–94. doi: 10.1159/000210987. [DOI] [PubMed] [Google Scholar]
  33. Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J., Davis R. J. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995 Mar 31;270(13):7420–7426. doi: 10.1074/jbc.270.13.7420. [DOI] [PubMed] [Google Scholar]
  34. Rosenberg E., Taher M. M., Kuemmerle N. B., Farnsworth J., Valerie K. A truncated human xeroderma pigmentosum complementation group A protein expressed from an adenovirus sensitizes human tumor cells to ultraviolet light and cisplatin. Cancer Res. 2001 Jan 15;61(2):764–770. [PubMed] [Google Scholar]
  35. Rouabhia M., Jobin N., Doucet R., Jr, Bergeron J., Auger F. A. CD36(+)-dendritic epidermal cells: a putative actor in the cutaneous immune system. Cell Transplant. 1994 Nov-Dec;3(6):529–536. doi: 10.1177/096368979400300610. [DOI] [PubMed] [Google Scholar]
  36. Sabapathy K., Klemm M., Jaenisch R., Wagner E. F. Regulation of ES cell differentiation by functional and conformational modulation of p53. EMBO J. 1997 Oct 15;16(20):6217–6229. doi: 10.1093/emboj/16.20.6217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sakaguchi K., Sakamoto H., Xie D., Erickson J. W., Lewis M. S., Anderson C. W., Appella E. Effect of phosphorylation on tetramerization of the tumor suppressor protein p53. J Protein Chem. 1997 Jul;16(5):553–556. doi: 10.1023/a:1026334116189. [DOI] [PubMed] [Google Scholar]
  38. Sanchez-Prieto R., Rojas J. M., Taya Y., Gutkind J. S. A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res. 2000 May 1;60(9):2464–2472. [PubMed] [Google Scholar]
  39. Schwenger P., Bellosta P., Vietor I., Basilico C., Skolnik E. Y., Vilcek J. Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2869–2873. doi: 10.1073/pnas.94.7.2869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. She Q. B., Chen N., Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem. 2000 Jul 7;275(27):20444–20449. doi: 10.1074/jbc.M001020200. [DOI] [PubMed] [Google Scholar]
  41. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  42. Shimizu H., Banno Y., Sumi N., Naganawa T., Kitajima Y., Nozawa Y. Activation of p38 mitogen-activated protein kinase and caspases in UVB-induced apoptosis of human keratinocyte HaCaT cells. J Invest Dermatol. 1999 May;112(5):769–774. doi: 10.1046/j.1523-1747.1999.00582.x. [DOI] [PubMed] [Google Scholar]
  43. Slee E. A., Harte M. T., Kluck R. M., Wolf B. B., Casiano C. A., Newmeyer D. D., Wang H. G., Reed J. C., Nicholson D. W., Alnemri E. S. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999 Jan 25;144(2):281–292. doi: 10.1083/jcb.144.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Spandau D. F. Distinct conformations of p53 are observed at different stages of keratinocyte differentiation. Oncogene. 1994 Jul;9(7):1861–1868. [PubMed] [Google Scholar]
  45. Stommel J. M., Marchenko N. D., Jimenez G. S., Moll U. M., Hope T. J., Wahl G. M. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 1999 Mar 15;18(6):1660–1672. doi: 10.1093/emboj/18.6.1660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Susin S. A., Daugas E., Ravagnan L., Samejima K., Zamzami N., Loeffler M., Costantini P., Ferri K. F., Irinopoulou T., Prévost M. C. Two distinct pathways leading to nuclear apoptosis. J Exp Med. 2000 Aug 21;192(4):571–580. doi: 10.1084/jem.192.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Trautmann A., Akdis M., Klunker S., Blaser K., Akdis C. A. Role of apoptosis in atopic dermatitis. Int Arch Allergy Immunol. 2001 Jan-Mar;124(1-3):230–232. doi: 10.1159/000053720. [DOI] [PubMed] [Google Scholar]
  48. Varghese J., Chattopadhaya S., Sarin A. Inhibition of p38 kinase reveals a TNF-alpha-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line. J Immunol. 2001 Jun 1;166(11):6570–6577. doi: 10.4049/jimmunol.166.11.6570. [DOI] [PubMed] [Google Scholar]
  49. Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
  50. Zerrahn J., Deppert W., Weidemann D., Patschinsky T., Richards F., Milner J. Correlation between the conformational phenotype of p53 and its subcellular location. Oncogene. 1992 Jul;7(7):1371–1381. [PubMed] [Google Scholar]
  51. el-Deiry W. S. Regulation of p53 downstream genes. Semin Cancer Biol. 1998;8(5):345–357. doi: 10.1006/scbi.1998.0097. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES