Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2002 Jul 1;365(Pt 1):165–172. doi: 10.1042/BJ20011727

Fluorescently labelled bovine acyl-CoA-binding protein acting as an acyl-CoA sensor: interaction with CoA and acyl-CoA esters and its use in measuring free acyl-CoA esters and non-esterified fatty acids.

Majken C T Wadum 1, Jens K Villadsen 1, Søren Feddersen 1, Rikke S Møller 1, Thomas B F Neergaard 1, Birthe B Kragelund 1, Peter Højrup 1, Nils J Faergeman 1, Jens Knudsen 1
PMCID: PMC1222666  PMID: 12071849

Abstract

Long-chain acyl-CoA esters are key metabolites in lipid synthesis and beta-oxidation but, at the same time, are important regulators of intermediate metabolism, insulin secretion, vesicular trafficking and gene expression. Key tools in studying the regulatory functions of acyl-CoA esters are reliable methods for the determination of free acyl-CoA concentrations. No such method is presently available. In the present study, we describe the synthesis of two acyl-CoA sensors for measuring free acyl-CoA concentrations using acyl-CoA-binding protein as a scaffold. Met24 and Ala53 of bovine acyl-CoA-binding protein were replaced by cysteine residues, which were covalently modified with 6-bromoacetyl-2-dimethylaminonaphthalene to make the two fluorescent acyl-CoA indicators (FACIs) FACI-24 and FACI-53. FACI-24 and FACI-53 showed fluorescence emission maximum at 510 and 525 nm respectively, in the absence of ligand (excitation 387 nm). Titration of FACI-24 and FACI-53 with hexadecanoyl-CoA and dodecanoyl-CoA increased the fluorescence yield 5.5-and 4.7-fold at 460 and 495 nm respectively. FACI-24 exhibited a high, and similar increase in, fluorescence yield at 460 nm upon binding of C14-C20 saturated and unsaturated acyl-CoA esters. Both indicators bind long-chain (>C14) acyl-CoA esters with high specificity and affinity (K(d)=0.6-1.7 nM). FACI-53 showed a high fluorescence yield for C8-C12 acyl chains. It is shown that FACI-24 acts as a sensitive acyl-CoA sensor for measuring the concentration of free acyl-CoA, acyl-CoA synthetase activity and the concentrations of free fatty acids after conversion of the fatty acid into their respective acyl-CoA esters.

Full Text

The Full Text of this article is available as a PDF (202.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chin J. P. Marine oils and cardiovascular reactivity. Prostaglandins Leukot Essent Fatty Acids. 1994 May;50(5):211–222. doi: 10.1016/0952-3278(94)90156-2. [DOI] [PubMed] [Google Scholar]
  2. Cowing B. E., Saker K. E. Polyunsaturated fatty acids and epidermal growth factor receptor/mitogen-activated protein kinase signaling in mammary cancer. J Nutr. 2001 Apr;131(4):1125–1128. doi: 10.1093/jn/131.4.1125. [DOI] [PubMed] [Google Scholar]
  3. Deeney J. T., Gromada J., Høy M., Olsen H. L., Rhodes C. J., Prentki M., Berggren P. O., Corkey B. E. Acute stimulation with long chain acyl-CoA enhances exocytosis in insulin-secreting cells (HIT T-15 and NMRI beta-cells). J Biol Chem. 2000 Mar 31;275(13):9363–9368. doi: 10.1074/jbc.275.13.9363. [DOI] [PubMed] [Google Scholar]
  4. Deeney J. T., Prentki M., Corkey B. E. Metabolic control of beta-cell function. Semin Cell Dev Biol. 2000 Aug;11(4):267–275. doi: 10.1006/scdb.2000.0175. [DOI] [PubMed] [Google Scholar]
  5. Dobbins R. L., Szczepaniak L. S., Bentley B., Esser V., Myhill J., McGarry J. D. Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes. 2001 Jan;50(1):123–130. doi: 10.2337/diabetes.50.1.123. [DOI] [PubMed] [Google Scholar]
  6. Ellis B. A., Poynten A., Lowy A. J., Furler S. M., Chisholm D. J., Kraegen E. W., Cooney G. J. Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab. 2000 Sep;279(3):E554–E560. doi: 10.1152/ajpendo.2000.279.3.E554. [DOI] [PubMed] [Google Scholar]
  7. Faergeman N. J., Knudsen J. Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem J. 1997 Apr 1;323(Pt 1):1–12. doi: 10.1042/bj3230001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Faergeman N. J., Sigurskjold B. W., Kragelund B. B., Andersen K. V., Knudsen J. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry. Biochemistry. 1996 Nov 12;35(45):14118–14126. doi: 10.1021/bi960545z. [DOI] [PubMed] [Google Scholar]
  9. Fisher C. L., Pei G. K. Modification of a PCR-based site-directed mutagenesis method. Biotechniques. 1997 Oct;23(4):570-1, 574. doi: 10.2144/97234bm01. [DOI] [PubMed] [Google Scholar]
  10. Fulceri R., Knudsen J., Giunti R., Volpe P., Nori A., Benedetti A. Fatty acyl-CoA-acyl-CoA-binding protein complexes activate the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. Biochem J. 1997 Jul 15;325(Pt 2):423–428. doi: 10.1042/bj3250423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Glatz J. F., van der Vusse G. J. Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 1996 Sep;35(3):243–282. doi: 10.1016/s0163-7827(96)00006-9. [DOI] [PubMed] [Google Scholar]
  12. Hu F. B., Manson J. E., Willett W. C. Types of dietary fat and risk of coronary heart disease: a critical review. J Am Coll Nutr. 2001 Feb;20(1):5–19. doi: 10.1080/07315724.2001.10719008. [DOI] [PubMed] [Google Scholar]
  13. Kim J. K., Fillmore J. J., Chen Y., Yu C., Moore I. K., Pypaert M., Lutz E. P., Kako Y., Velez-Carrasco W., Goldberg I. J. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci U S A. 2001 Jun 5;98(13):7522–7527. doi: 10.1073/pnas.121164498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kragelund B. B., Andersen K. V., Madsen J. C., Knudsen J., Poulsen F. M. Three-dimensional structure of the complex between acyl-coenzyme A binding protein and palmitoyl-coenzyme A. J Mol Biol. 1993 Apr 20;230(4):1260–1277. doi: 10.1006/jmbi.1993.1240. [DOI] [PubMed] [Google Scholar]
  15. Mandrup S., Højrup P., Kristiansen K., Knudsen J. Gene synthesis, expression in Escherichia coli, purification and characterization of the recombinant bovine acyl-CoA-binding protein. Biochem J. 1991 Jun 15;276(Pt 3):817–823. doi: 10.1042/bj2760817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McGarry J. D., Dobbins R. L., Stein D. T. Acides gras, insulinorésistance et fonction de la cellule beta-pancréatique. Journ Annu Diabetol Hotel Dieu. 1998:1–10. [PubMed] [Google Scholar]
  17. McGarry J. D. Glucose-fatty acid interactions in health and disease. Am J Clin Nutr. 1998 Mar;67(3 Suppl):500S–504S. doi: 10.1093/ajcn/67.3.500S. [DOI] [PubMed] [Google Scholar]
  18. Oakes N. D., Bell K. S., Furler S. M., Camilleri S., Saha A. K., Ruderman N. B., Chisholm D. J., Kraegen E. W. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise: parallel relationship between insulin stimulation of glucose uptake and suppression of long-chain fatty acyl-CoA. Diabetes. 1997 Dec;46(12):2022–2028. doi: 10.2337/diab.46.12.2022. [DOI] [PubMed] [Google Scholar]
  19. Oakes N. D., Cooney G. J., Camilleri S., Chisholm D. J., Kraegen E. W. Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes. 1997 Nov;46(11):1768–1774. doi: 10.2337/diab.46.11.1768. [DOI] [PubMed] [Google Scholar]
  20. Peitzsch R. M., McLaughlin S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry. 1993 Oct 5;32(39):10436–10443. doi: 10.1021/bi00090a020. [DOI] [PubMed] [Google Scholar]
  21. Richieri G. V., Ogata R. T., Kleinfeld A. M. A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. J Biol Chem. 1992 Nov 25;267(33):23495–23501. [PubMed] [Google Scholar]
  22. Robinson L. E., Clandinin M. T., Field C. J. R3230AC rat mammary tumor and dietary long-chain (n-3) fatty acids change immune cell composition and function during mitogen activation. J Nutr. 2001 Jul;131(7):2021–2027. doi: 10.1093/jn/131.7.2021. [DOI] [PubMed] [Google Scholar]
  23. Rolf B., Oudenampsen-Krüger E., Börchers T., Faergeman N. J., Knudsen J., Lezius A., Spener F. Analysis of the ligand binding properties of recombinant bovine liver-type fatty acid binding protein. Biochim Biophys Acta. 1995 Dec 7;1259(3):245–253. doi: 10.1016/0005-2760(95)00170-0. [DOI] [PubMed] [Google Scholar]
  24. Sauer L. A., Dauchy R. T., Blask D. E. Polyunsaturated fatty acids, melatonin, and cancer prevention. Biochem Pharmacol. 2001 Jun 15;61(12):1455–1462. doi: 10.1016/s0006-2952(01)00634-7. [DOI] [PubMed] [Google Scholar]
  25. Sterchele P. F., Vanden Heuvel J. P., Davis J. W., 2nd, Shrago E., Knudsen J., Peterson R. E. Induction of hepatic acyl-CoA-binding protein and liver fatty acid-binding protein by perfluorodecanoic acid in rats. Lack of correlation with hepatic long-chain acyl-CoA levels. Biochem Pharmacol. 1994 Aug 30;48(5):955–966. doi: 10.1016/0006-2952(94)90366-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES