Abstract
The cellulosome produced by Piromyces sp. strain E2 during growth on filter paper was purified by using an optimized cellulose-affinity method consisting of steps of EDTA washing of the cellulose-bound protein followed by elution with water. Three dominant proteins were identified in the cellulosome preparation, with molecular masses of 55, 80 and 90 kDa. Treatment of cellulose-bound cellulosome with a number of denaturing agents was also tested. Incubation with 0.5% (w/v) SDS or 8 M urea released most cellulosomal proteins, while leaving the greater fraction of the 80, 90 and 170 kDa components. To investigate the major 90 kDa cellulosome protein further, the corresponding gene, cel9A, was isolated, using immunoscreening and N-terminal sequencing. Inspection of the cel9A genomic organization revealed the presence of four introns, allowing the construction of a consensus for introns in anaerobic fungi. The 2800 bp cDNA clone contained an open reading frame of 2334 bp encoding a 757-residue extracellular protein. Cel9A includes a 445-residue glycoside hydrolase family 9 catalytic domain, and so is the first fungal representative of this large family. Both modelling of the catalytic domain as well as the activity measured with low level expression in Escherichia coli indicated that Cel9A is an endoglucanase. The catalytic domain is succeeded by a putative beta-sheet module of 160 amino acids with unknown function, followed by a threonine-rich linker and three fungal docking domains. Homology modelling of the Cel9A dockerins suggested that the cysteine residues present are all involved in disulphide bridges. The results presented here are used to discuss evolution of glycoside hydrolase family 9 enzymes.
Full Text
The Full Text of this article is available as a PDF (556.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akhmanova A., Voncken F. G., Harhangi H., Hosea K. M., Vogels G. D., Hackstein J. H. Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2. Mol Microbiol. 1998 Dec;30(5):1017–1027. doi: 10.1046/j.1365-2958.1998.01130.x. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bayer E. A., Chanzy H., Lamed R., Shoham Y. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 1998 Oct;8(5):548–557. doi: 10.1016/s0959-440x(98)80143-7. [DOI] [PubMed] [Google Scholar]
- Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhat S., Goodenough P. W., Bhat M. K., Owen E. Isolation of four major subunits from Clostridium thermocellum cellulosome and their synergism in the hydrolysis of crystalline cellulose. Int J Biol Macromol. 1994 Dec;16(6):335–342. doi: 10.1016/0141-8130(94)90066-3. [DOI] [PubMed] [Google Scholar]
- Brodskii L. I., Ivanov V. V., Kalaidzidis Ia L., Leontovich A. M., Nikolaev V. K., Feranchuk S. I., Drachev V. A. GeneBee-NET: Baziruiushchiisia v seti Internet server po analizu struktur biopolimerov. Biokhimiia. 1995 Aug;60(8):1221–1230. [PubMed] [Google Scholar]
- Byrne K. A., Lehnert S. A., Johnson S. E., Moore S. S. Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene. 1999 Nov 1;239(2):317–324. doi: 10.1016/s0378-1119(99)00396-0. [DOI] [PubMed] [Google Scholar]
- Choi S. K., Ljungdahl L. G. Dissociation of the cellulosome of Clostridium thermocellum in the presence of ethylenediaminetetraacetic acid occurs with the formation of trucated polypeptides. Biochemistry. 1996 Apr 16;35(15):4897–4905. doi: 10.1021/bi9524629. [DOI] [PubMed] [Google Scholar]
- Chothia C., Lesk A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 1986 Apr;5(4):823–826. doi: 10.1002/j.1460-2075.1986.tb04288.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988 Nov 25;16(22):10881–10890. doi: 10.1093/nar/16.22.10881. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dijkerman R., Vervuren M. B., Op Den Camp H. J., van der Drift C. Adsorption characteristics of cellulolytic enzymes from the anaerobic fungus Piromyces sp. strain E2 on microcrystalline cellulose. Appl Environ Microbiol. 1996 Jan;62(1):20–25. doi: 10.1128/aem.62.1.20-25.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding S. Y., Bayer E. A., Steiner D., Shoham Y., Lamed R. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J Bacteriol. 1999 Nov;181(21):6720–6729. doi: 10.1128/jb.181.21.6720-6729.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ding S. Y., Bayer E. A., Steiner D., Shoham Y., Lamed R. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol. 2000 Sep;182(17):4915–4925. doi: 10.1128/jb.182.17.4915-4925.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubray G., Bezard G. A highly sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 15;119(2):325–329. doi: 10.1016/0003-2697(82)90593-0. [DOI] [PubMed] [Google Scholar]
- Durand R., Fischer M., Rascle C., Fèvre M. Neocallimastix frontalis enolase gene, enol: first report of an intron in an anaerobic fungus. Microbiology. 1995 Jun;141(Pt 6):1301–1308. doi: 10.1099/13500872-141-6-1301. [DOI] [PubMed] [Google Scholar]
- Eberhardt R. Y., Gilbert H. J., Hazlewood G. P. Primary sequence and enzymic properties of two modular endoglucanases, Cel5A and Cel45A, from the anaerobic fungus Piromyces equi. Microbiology. 2000 Aug;146(Pt 8):1999–2008. doi: 10.1099/00221287-146-8-1999. [DOI] [PubMed] [Google Scholar]
- Fanutti C., Ponyi T., Black G. W., Hazlewood G. P., Gilbert H. J. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem. 1995 Dec 8;270(49):29314–29322. doi: 10.1074/jbc.270.49.29314. [DOI] [PubMed] [Google Scholar]
- Fillingham I. J., Kroon P. A., Williamson G., Gilbert H. J., Hazlewood G. P. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem J. 1999 Oct 1;343(Pt 1):215–224. [PMC free article] [PubMed] [Google Scholar]
- Gerwig G. J., de Waard P., Kamerling J. P., Vliegenthart J. F., Morgenstern E., Lamed R., Bayer E. A. Novel O-linked carbohydrate chains in the cellulase complex (cellulosome) of Clostridium thermocellum. 3-O-Methyl-N-acetylglucosamine as a constituent of a glycoprotein. J Biol Chem. 1989 Jan 15;264(2):1027–1035. [PubMed] [Google Scholar]
- Gilbert H. J., Hazlewood G. P., Laurie J. I., Orpin C. G., Xue G. P. Homologous catalytic domains in a rumen fungal xylanase: evidence for gene duplication and prokaryotic origin. Mol Microbiol. 1992 Aug;6(15):2065–2072. doi: 10.1111/j.1365-2958.1992.tb01379.x. [DOI] [PubMed] [Google Scholar]
- Giorda R., Ohmachi T., Shaw D. R., Ennis H. L. A shared internal threonine-glutamic acid-threonine-proline repeat defines a family of Dictyostelium discoideum spore germination specific proteins. Biochemistry. 1990 Aug 7;29(31):7264–7269. doi: 10.1021/bi00483a015. [DOI] [PubMed] [Google Scholar]
- Harris M., Jones T. A. Molray--a web interface between O and the POV-Ray ray tracer. Acta Crystallogr D Biol Crystallogr. 2001 Jul 23;57(Pt 8):1201–1203. doi: 10.1107/s0907444901007697. [DOI] [PubMed] [Google Scholar]
- Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
- Irwin D., Shin D. H., Zhang S., Barr B. K., Sakon J., Karplus P. A., Wilson D. B. Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol. 1998 Apr;180(7):1709–1714. doi: 10.1128/jb.180.7.1709-1714.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Karplus K., Sjölander K., Barrett C., Cline M., Haussler D., Hughey R., Holm L., Sander C. Predicting protein structure using hidden Markov models. Proteins. 1997;Suppl 1:134–139. doi: 10.1002/(sici)1097-0134(1997)1+<134::aid-prot18>3.3.co;2-q. [DOI] [PubMed] [Google Scholar]
- Kleywegt G. J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):842–857. doi: 10.1107/S0907444995016477. [DOI] [PubMed] [Google Scholar]
- Kriventseva E. V., Gelfand M. S. Statistical analysis of the exon-intron structure of higher and lower eukaryote genes. J Biomol Struct Dyn. 1999 Oct;17(2):281–288. doi: 10.1080/07391102.1999.10508361. [DOI] [PubMed] [Google Scholar]
- Kruus K., Andreacchi A., Wang W. K., Wu J. H. Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol. 1995 Dec;44(3-4):399–404. doi: 10.1007/BF00169935. [DOI] [PubMed] [Google Scholar]
- Kruus K., Wang W. K., Ching J., Wu J. H. Exoglucanase activities of the recombinant Clostridium thermocellum CelS, a major cellulosome component. J Bacteriol. 1995 Mar;177(6):1641–1644. doi: 10.1128/jb.177.6.1641-1644.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. S., Ha J. K., Cheng K. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl Environ Microbiol. 2000 Sep;66(9):3807–3813. doi: 10.1128/aem.66.9.3807-3813.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X. L., Chen H., Ljungdahl L. G. Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol. 1997 Feb;63(2):628–635. doi: 10.1128/aem.63.2.628-635.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X. L., Chen H., Ljungdahl L. G. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol. 1997 Dec;63(12):4721–4728. doi: 10.1128/aem.63.12.4721-4728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacCallum R. M., Kelley L. A., Sternberg M. J. SAWTED: structure assignment with text description--enhanced detection of remote homologues with automated SWISS-PROT annotation comparisons. Bioinformatics. 2000 Feb;16(2):125–129. doi: 10.1093/bioinformatics/16.2.125. [DOI] [PubMed] [Google Scholar]
- Nicol F., His I., Jauneau A., Vernhettes S., Canut H., Höfte H. A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 1998 Oct 1;17(19):5563–5576. doi: 10.1093/emboj/17.19.5563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghothama S., Eberhardt R. Y., Simpson P., Wigelsworth D., White P., Hazlewood G. P., Nagy T., Gilbert H. J., Williamson M. P. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat Struct Biol. 2001 Sep;8(9):775–778. doi: 10.1038/nsb0901-775. [DOI] [PubMed] [Google Scholar]
- Riedel K., Bronnenmeier K. Intramolecular synergism in an engineered exo-endo-1,4-beta-glucanase fusion protein. Mol Microbiol. 1998 May;28(4):767–775. doi: 10.1046/j.1365-2958.1998.00834.x. [DOI] [PubMed] [Google Scholar]
- Sakon J., Irwin D., Wilson D. B., Karplus P. A. Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat Struct Biol. 1997 Oct;4(10):810–818. doi: 10.1038/nsb1097-810. [DOI] [PubMed] [Google Scholar]
- Steenbakkers P. J., Li X. L., Ximenes E. A., Arts J. G., Chen H., Ljungdahl L. G., Op Den Camp H. J. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J Bacteriol. 2001 Sep;183(18):5325–5333. doi: 10.1128/JB.183.18.5325-5333.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teunissen M. J., Op den Camp H. J., Orpin C. G., Huis in 't Veld J. H., Vogels G. D. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium. J Gen Microbiol. 1991 Jun;137(6):1401–1408. doi: 10.1099/00221287-137-6-1401. [DOI] [PubMed] [Google Scholar]
- Watanabe H., Tokuda G. Animal cellulases. Cell Mol Life Sci. 2001 Aug;58(9):1167–1178. doi: 10.1007/PL00000931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou L., Xue G. P., Orpin C. G., Black G. W., Gilbert H. J., Hazlewood G. P. Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J. 1994 Jan 15;297(Pt 2):359–364. doi: 10.1042/bj2970359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]